Skip to main content
Log in

Distinctive Features of Measuring Te and ne Spatial Distributions in the Globus-M2 Spherical Tokamak Using Method of Thomson Scattering of Laser Radiation

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of measuring the electron temperature and density spatial distributions in plasma of the Globus-M2 tokamak using the Thomson scattering diagnostics are presented. The diagnostics provides measurements throughout the entire tokamak discharge, starting from time of gas breakdown. The Thomson scattering data were analyzed in order to determine the positions of the last closed flux surface, the plasma magnetic axis, and the radius of inversion during the saw-tooth oscillations. The results of measurements performed during the internal reconnection of magnetic field lines are presents, as well as the dynamics of spatial distributions of electron temperature, density and pressure during the plasma transition to the H-mode. The results of measuring the electron temperature distribution in the scrape-off layer using the Thomson scattering diagnostics are also presented for distances up to 4 cm outside the last closed flux surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. N. J. Peacock, D. C. Robinson, M. J. Forrest, P. D. Wilcock, and V. V. Sannikov, Nature 224, 488 (1969).

    Article  ADS  Google Scholar 

  2. A. B. Kukushkin, A. E. Leneva, and V. I. Pergament, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 6 (2), 88 (1983).

    Google Scholar 

  3. S. L. Prunty, Phys. Scr. 89, 128001 (2014). https://doi.org/10.1088/0031-8949/89/12/128001

    Article  Google Scholar 

  4. V. K. Minaev, N. V. Gusev, V. I. Sakharov, N. N. Varfolomeev, V. A. Bakharev, E. N. Belyakov, P. N. Bondarchuk, F. V. Brunkov, V. I. Chernyshev, V. V. Davydenko, A. A. Dyachenko, S. A. Kavin, N. A. Khitrov, E. O. Khromov, A. N. Kiselev, et al., Nucl. Fusion 57, 066047 (2017).

    Article  ADS  Google Scholar 

  5. G. S. Kurskiev, N. S. Zhiltsov, A. N. Koval, A. F. Kornev, A. M. Makarov, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, V. A. Solovey, E. E. Tkachenko, S. Yu. Tolstyakov, and P. V. Chernakov, Tech. Phys. Lett. 49 (suppl. 3), S270 (2023).

    Article  Google Scholar 

  6. N. S. Zhiltsov, G. S. Kurskiev, S. Yu. Tolstyakov, V. A. Solovey, A. N. Koval, S. E. Aleksandrov, A. N. Bazhenov, P. V. Chernakov, S. V. Filippov, V. K. Gusev, N. A. Khromov, E. O. Kiselev, A. F. Kornev, S. V. Krikunov, A. M. Makarov, et al., ar-Xiv23.11.18723. https://arxiv.org/abs/2311.18723v1.

  7. Yu. V. Petrov, P. A. Bagryanskii, I. M. Balachenkov, N. N. Bakharev, P. N. Brunkov, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. A. Goryainov, V. V. D’yachenko, N. V. Ermakov, E. G. Zhilin, N. S. Zhiltsov, S. V. Ivanenko, M. V. Il’yasova, et al., Plasma Phys. Rep. 49, 1459 (2023).

    Article  Google Scholar 

  8. N. S. Zhiltsov, G. S. Kurskiev, V. A. Solovey, V. K. Gusev, A. A. Kavin, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, V. V. Solokha, A. N. Novokhatsky, E. E. Tkachenko, S. Yu. Tolstyakov, and E. A. Tukhmeneva, Tech. Phys. Lett. 49 (suppl. 4), S350 (2023).

    Article  Google Scholar 

  9. E. E. Tkachenko, G. S. Kurskiev, N. S. Zhiltsov, A. V. Voronin, V. Yu. Goryainov, E. E. Mukhin, S. Yu. Tolstyakov, V. I. Varfolomeev, V. K. Gusev, V. B. Minaev, A. N. Novokhatskii, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, E. O. Kiselev, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 44 (3), 52 (2021).

    Google Scholar 

  10. D. Keeling, R. Akers, M. F. M. de Bock, C. D. Challis, C. Michael, A. Patel, and the MAST Team, in Proceedings of the 38th EPS Conference on Plasma Physics, Strasbourg, 2011.

  11. P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, V. I. Varfolomeev, V. K. Gusev, L. A. Esipov, N. S. Zhiltsov, V. V. Kolmogorov, A. A. Kondakov, I. V. Miroshnikov, A. A. Panasenkov, A. V. Sorokin, and I. A. Shikhovtsev, Plasma Phys. Rep. 49, 1501 (2023).

    Article  Google Scholar 

  12. S. C. Jardin, I. Krebs, and N. Ferraro, Phys. Plasmas 27, 032509 (2020). https://doi.org/10.1063/1.5140968

    Article  ADS  Google Scholar 

  13. G. S. Kurskiev, V. K. Gusev, S. Yu. Tolstyakov, A. A. Berezutskii, V. V. Bulanin, V. I. Varfolomeev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, A. Yu. Yashin, et al., Tech. Phys. Lett. 37, 1127 (2011).

    Article  Google Scholar 

  14. V. V. Bulanin, G. S. Kurskiev, V. V. Solokha, A. Yu. Yashin, and N. S. Zhiltsov, Plasma Phys. Controlled Fusion 63, 122001 (2021). https://doi.org/10.1088/1361-6587/ac36a4

    Article  ADS  Google Scholar 

  15. N. V. Sakharov, A. A. Kavin, A. B. Mineev, N. N. Bakharev, E. N. Bondarchuk, V. K. Gusev, N. S. Zhiltsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, Yu. V. Petrov, I. Yu. Rodin, O. M. Skrekel, A. Yu. Telnova, E. E. Tkachenko, et al., Plasma Phys. Rep. 49, 1542 (2023).

    Article  Google Scholar 

  16. A. Sykes, Tech. Phys. 69, 1047 (1999).

    Article  Google Scholar 

  17. N. Hayashi, T. H. Mizuguchi, Y. Watanabe, T. Todo, T. Sato, and Complexity Simulation Group, Nucl. Fusion 40, 721 (2000). https://doi.org/10.1088/0029-5515/40/3Y/337

    Article  ADS  Google Scholar 

  18. E. A. Tukhmeneva, N. N. Bakharev, V. I. Varfolomeev, V. K. Gusev, N. S. Zhiltsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. D. Sladkomedova, A. Yu. Telnova, S. Yu. Tolstyakov, and P. B. Shchegolev, Tech. Phys. Lett. 47, 56 (2021). https://doi.org/10.1134/S1063785021010272

    Article  ADS  Google Scholar 

  19. V. K. Kurskiev, N. V. Gusev, Yu. V. Sakharov, N. N. Petrov, I. M. Bakharev, A. N. Balachenkov, F. V. Bazhenov, N. A. Chernyshev, E. O. Khromov, S. V. Kiselev, V. B. Krikunov, I. V. Minaev, A. N. Miroshnikov, N. S. Novokhatskii, E. E. Zhiltsov, et al., Nucl. Fusion 62, 016011 (2022).

    Article  ADS  Google Scholar 

  20. A. Yu. Yashin, V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, and A. M. Ponomarenko, Presentation at the 28th IAEA Fusion Energy Conference, Virtual Event, 2020. https://doi.org/10.13140/RG.2.2.14491.39203

  21. A. Ponomarenko, A. Yashin, G. Kurskiev, V. Minaev, A. Petrov, Yu. Petrov, N. Sakharov, and N. Zhiltsov, Sensors 23, 830 (2023). https://doi.org/10.3390/s23020830

    Article  ADS  Google Scholar 

  22. V. I. Vasiliev, Yu. A. Kostsov, K. M. Lobanov, L. P. Makarova, A. B. Mineev, V. K. Gusev, R. G. Levin, Yu. V. Petrov, and N. V. Sakharov, Nucl. Fusion 46, S625 (2006). https://doi.org/10.1088/0029-5515/46/8/S08

    Article  ADS  Google Scholar 

  23. G. S. Kurskiev, N. V. Sakharov, V. K. Gusev, V. B. Minaev, I. V. Miroshnikov, Yu. V Petrov, A. Yu. Telnova, N. N. Bakharev, E. O. Kiselev, N. S. Zhiltsov, P. B. Shchegolev, I. M. Balachenkov, V. I. Varfolomeev, A. V. Voronin, V. Yu. Goryainov, et al., Plasma Phys. Rep. 49, 403 (2023).

    Article  ADS  Google Scholar 

  24. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, N. N. Bakharev, A. D. Iblyaminova, P. B. Shchegolev, G. F. Avdeeva, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, and S. Yu. Tolstyakov, Plasma Phys. Controlled Fusion. 59, 045010 (2017). https://doi.org/10.1088/1361-6587/aa5cd5

    Article  ADS  Google Scholar 

  25. A. Sykes, J.-W. Ahn, R. Akers, E. Arends, P. G. Carolan, G. F. Counsell, S. J. Fielding, M. Gryaznevich, R. Martin, M. Price, C. Roach, V. Shevchenko, M. Tournianski, M. Valovic, M. J. Walsh, et al., Phys. Plasmas 8, 2101 (2001). https://doi.org/10.1063/1.1352595

    Article  ADS  Google Scholar 

  26. E. O. Kiselev, I. M. Balachenkov, N. N. Bakharev, V. I. Varfolomeev, V. K. Gusev, N. S. Zhiltsov, O. A. Zenkova, A. A. Kavin, G. S. Kurskiev, V. B. Minaev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, O. M. Skrekel, et al., Plasma Phys. Rep. 49, 1490 (2023).

    Article  Google Scholar 

  27. E. E. Tkachenko, N. V. Sakharov, A. A. Kavin, G. S. Kurskiev, N. S. Zhiltsov, I. V. Miroshnikov, Yu. V. Petrov, V. B. Minaev, N. N. Bakharev, E. O. Kiselev, A. N. Novokhatskii, A. B. Mineev, V. V. Solokha, A. Yu. Telnova, E. A. Tyukhmeneva, et al., Plasma Phys. Rep. 49, 1515 (2023).

    Article  Google Scholar 

  28. ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, and ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999). https://doi.org/10.1088/0029-5515/39/12/302

    Article  Google Scholar 

  29. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, N. N. Bakharev, A. D. Iblyaminova, P. B. Shchegolev, G. F. Avdeeva, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, and S. Yu. Tolstyakov, Plasma Phys. Controlled Fusion 59, 045010 (2017). https://doi.org/10.1088/1361-6587/aa5cd5

    Article  ADS  Google Scholar 

  30. R. J. Goldston, Plasma Phys. Controlled Fusion 26, 87 (1984). https://doi.org/10.1088/0741-3335/26/1A/308

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were performed at the unique scientific facility “The Globus-M Spherical Tokamak,” which is a part of the Federal Multiple-Access Center “Materials Science and Diagnostics in Advanced Technologies.”

Funding

The preparation of the TS diagnostics equipment (Section 2) was supported in part by the Ministry of Science and Higher Education of the Russian Federation under the State Contract no. 0034-2019-0001. Measurements of the Te and ne profiles during the transition to the H-mode (S-ection 3) were supported under the State Contract no. 0040-2019-0023; the experiments in the regime with auxiliary heating (Section 4) were supported under the State Contract no. 0034-2021-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zhiltsov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhiltsov, N.S., Kurskiev, G.S., Solovey, V.A. et al. Distinctive Features of Measuring Te and ne Spatial Distributions in the Globus-M2 Spherical Tokamak Using Method of Thomson Scattering of Laser Radiation. Plasma Phys. Rep. 50, 310–321 (2024). https://doi.org/10.1134/S1063780X24600099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X24600099

Keywords:

Navigation