Skip to main content
Log in

Analytical Theory of Reflection of Hydrogen Isotopes of Thermonuclear Energies from Construction Materials

  • INTERACTION OF PLASMA WITH SURFACES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A theoretical description of reflection of hydrogen isotopes from a solid body based on data available in modern literature on the cross sections for elastic and inelastic scattering of ions is presented. The results of the analytical calculation are compared with the results of computer simulation and experimental data. The interaction of hydrogen isotopes with energies from 300 eV to 25 keV with materials in a wide range of atomic numbers, namely Be, C, Ti, Ni, W, Au, is considered. A critical review of existing analytical models of multiple scattering of light ions in solids is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. A. Kurnaev, E. S. Mashkova, and V. A. Molchanov, Reflection of Light Ions from the Surface of a Solid (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  2. E. S. Mashkova and V. A. Molchanov, Medium Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985).

    Google Scholar 

  3. E. S. Mashkova and V. A. Molchanov, Scattering of Medium-Energy Ions by Surfaces of Solids (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  4. Yu. V. Gott, Particle–Matter Interactions in Plasma Research (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  5. N. P. Kalashnikov, V. S. Remizovich, and M. I. Ryazanov, Collisions of Fast Charged Particles in Solids (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  6. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  7. D. Goebl, D. Roth, and P. Bauer, Phys. Rev. A: At. Mol. Opt. Phys. 87, 062903 (2013). https://doi.org/10.1103/PhysRevA.87.062903

    Article  ADS  Google Scholar 

  8. W. S. M. Werner, Surf. Interface Anal. 23, 737 (1995). https://doi.org/10.1002/sia.740231103

    Article  Google Scholar 

  9. V. P. Afanas’ev, S. D. Fedorovich, A. V. Lubenchenko, A. A. Ryjov, and M. S. Esimov, Z. Phys. 96, 253 (1994). https://doi.org/10.1007/BF01313291

    Article  Google Scholar 

  10. V. A. Ambartsumyan, E. R. Mustel’, A. B. Severnyi, and V. V. Sobolev, Theoretical Astrophysics, Ed. by V. A. Ambartsumyan (Gostekhizdat, Moscow, 1952; Pergamon Press, London, 1958).

  11. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

    Google Scholar 

  12. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (SIAM, Philadelphia, 1998).

    Book  Google Scholar 

  13. V. P. Afanas’ev, D. S. Efremenko, and P. S. Kaplya, J. Electron Spectrosc. Relat. Phenom. 210, 16 (2016). https://doi.org/10.1016/j.elspec.2016.04.006

    Article  Google Scholar 

  14. F. Salvat-Pujol and W. S. M. Werner, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 195416 (2011). https://doi.org/10.1103/PhysRevB.83.195416

    Article  ADS  Google Scholar 

  15. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGraw-Hill, New York, 1960).

    Google Scholar 

  16. V. P. Afanas’ev and L. G. Lobanova, Russ. Microelectron. 51, 210 (2022). https://doi.org/10.1134/S1063739722040035

    Article  Google Scholar 

  17. V. P. Afanas’ev, L. G. Lobanova, and V. I. Shulga, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 17, 78 (2023). https://doi.org/10.1134/S1027451023010032

    Article  Google Scholar 

  18. V. A. Kurnaev and V. G. Tel’kovskii, Experimental Data on Backscattering of Charged Particles: Lecture Texts (Mosk. Inzh.-Fiz. Inst., Moscow, 1982) [in Russian].

    Google Scholar 

  19. R. A. Langley, J. Bohdansky, W. Eckstein, P. Mioduszewski, J. Roth, E. Taglauer, E. W. Thomas, H. Verbeek, and K. L. Wilson, Nucl. Fusion 24, 001 (1984). https://doi.org/10.1088/0029-5515/24/S1/001

  20. D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, N. Efimov, P. Borisyuk, and Y. Lebedinskii, Nucl. Instrum. Methods Phys. Res., Sect. B 438, 54 (2019). https://doi.org/10.1016/j.nimb.2018.10.043

    Article  Google Scholar 

  21. D. G. Bulgadaryan, D. N. Sinelnikov, N. E. Efimov, and V. A. Kurnaev, Bull. Russ. Acad. Sci.: Phys. 84, 742 (2020). https://doi.org/10.3103/S1062873820060064

    Article  MathSciNet  Google Scholar 

  22. M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, NIST Standard Reference Database 124, Last Update to Data Content: July 2017, NISTIR 4999. Cited April 25, 2023.https://doi.org/10.18434/T4NC7P

  23. D. Bulgadaryan, V. Kurnaev, D. Sinelnikov, and N. Efimov, J. Phys.: Conf. Ser. 941, 012022 (2017). https://doi.org/10.1088/1742-6596941/1/012022

  24. A. Jablonski, F. Salvat, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database, Version 3.2, User’s Guide (National Institute of Standards and Technology, Gaithersburg, MD, 2010).

    Google Scholar 

  25. F. Salvat, A. Jablonski, and C. J. Powell, Comput. Phys. Commun. 165, 157 (2005). https://doi.org/10.1016/j.cpc.2004.09.006

    Article  ADS  Google Scholar 

  26. I. M. Bronshtein, V. P. Pronin, and V. M. Stozharov, Fiz. Tverd. Tela 16, 2107 (1974).

    Google Scholar 

  27. I. M. Bronshtein and V. P. Pronin, Fiz. Tverd. Tela 17, 2086 (1975).

    Google Scholar 

  28. K. Gärtner and K. Hehl, Phys. Status Solidi B 94, 231 (1979). https://doi.org/10.1002/pssb.2220940126

    Article  ADS  Google Scholar 

  29. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed. (Clarendon, Oxford, 1965).

    Google Scholar 

  30. O. B. Firsov, Sov. Phys. JETP 7, 308 (1958).

    Google Scholar 

  31. A. N. Zinoviev, P. Yu. Babenko, and K. Nordlund, N-ucl. Instr. Methods Phys. Res., Sect. B 508, 10 (2021). https://doi.org/10.1016/j.nimb.2021.10.001

    Article  Google Scholar 

  32. H. A. Bethe, Phys. Rev. 89, 1256 (1953). https://doi.org/10.1103/PhysRev.89.1256

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was carried out at the Moscow Power Engineering Institute (National Research University), and supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment no. FSWF-2023-0016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Afanas’ev or L. G. Lobanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.P., Lobanova, L.G. Analytical Theory of Reflection of Hydrogen Isotopes of Thermonuclear Energies from Construction Materials. Plasma Phys. Rep. 50, 247–254 (2024). https://doi.org/10.1134/S1063780X2360202X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2360202X

Keywords:

Navigation