Skip to main content
Log in

On Anomalous Dissipation in Plasma of Dusty Mercury’s Exosphere

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The anomalous dissipation related to the effect of charging of dust particles that gives rise to new physical phenomena, effects, and mechanisms represents one of the main specific features of dusty plasma that makes it different from conventional plasma containing no charged dust particles. We analyze the process of anomalous dissipation in the context of description of the dynamics of dust particles in dusty plasma of the Mercury’s exosphere. An analytical description of oscillations of a dust particle above the surface of Mercury is presented. The frequency of charging of dust particles that characterizes the anomalous dissipation determines the damping of such oscillations. It is demonstrated that the anomalous dissipation is important for substantiation of the model of levitating dust particles that is used for description of dusty plasma above Mercury. The results of numerical simulations that justify the use of the discussed model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing, Ed. by A. Bouchoule (Wiley, New York, 1999).

    Google Scholar 

  2. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  Google Scholar 

  4. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Lect. Notes Phys., Vol. 731) (Springer, Berlin, 2008).

    Book  Google Scholar 

  5. S. I. Popel, Lectures on the Physics of Dusty Plasma (MFTI, Moscow, 2012) [in Russian].

    Google Scholar 

  6. V. E. Fortov, Yu. M. Baturin, G. E. Morfill, and O. F. Petrov, Plasma Crystal. Space Experiments (Fizmatlit, Moscow, 2015) [in Russian].

    Google Scholar 

  7. V N. Tsytovich, Phys.—Usp 40, 53 (1997).

    Article  Google Scholar 

  8. V N. Tsytovich and J. Winter, Phys.—Usp. 41, 815 (1998).

    Article  Google Scholar 

  9. V. N. Tsytovich, Aust. J. Phys. 51, 763 (1998).

    Article  ADS  Google Scholar 

  10. R. L. Merlino and J. A. Goree, Phys. Today 57 (7), 32 (2004).

    Article  Google Scholar 

  11. S. I. Popel and G. E. Morfill, Ukr. J. Phys. 50, 161 (2005).

    Google Scholar 

  12. S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  13. K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).

    Article  ADS  Google Scholar 

  14. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Phys.—Usp. 40, 1163 (1997).

    Article  Google Scholar 

  15. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys.—Usp. 47, 447 (2004).

    Article  Google Scholar 

  16. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. I. Popel, S. I. Kopnin, M. Y. Yu, J. X. Ma, and F. Huang, J. Phys. D: Appl. Phys. 44, 174036 (2011).

    Article  ADS  Google Scholar 

  18. S. I. Popel, L. M. Zelenyi, A. P. Golub’, and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).

    Article  ADS  Google Scholar 

  19. L. M. Zelenyi, S. I. Popel, and A. V. Zakharov, Plasma Phys. Rep. 46, 527 (2020).

    Article  ADS  Google Scholar 

  20. V. N. Tsytovich and O. Havnes, Comments Plasma Phys. Controlled Fusion 15, 267 (1993).

    Google Scholar 

  21. S. Benkadda and V. N. Tsytovich, Phys. Plasmas 2, 2970 (1995).

    Article  ADS  Google Scholar 

  22. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  23. S. I. Popel, A. P. Golub’, and T. V. Losseva, JETP Lett. 74, 362 (2001).

    Article  ADS  Google Scholar 

  24. S. I. Popel and A. A. Gisko, Nonlinear Processes Geophys. 13, 223 (2006).

    Article  ADS  Google Scholar 

  25. S. I. Popel, A. P. Golub’, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 056402 (2003).

    Google Scholar 

  26. S. I. Popel, A. P. Golub’, A. I. Kassem, and L. M. Zelenyi, Phys. Plasmas 29, 013701 (2022).

    Article  ADS  Google Scholar 

  27. S. I. Popel and A. P. Golub’, JETP Lett. 115, 596 (2022).

    Article  ADS  Google Scholar 

  28. S. I. Popel, Plasma Phys. Rep. 49, 70 (2023).

    Article  ADS  Google Scholar 

  29. S. I. Popel, L. M. Zelenyi, and A. V. Zakharov, Plasma Phys. Rep. 49, 1006 (2023).

    Article  ADS  Google Scholar 

  30. J. Benkhoff, G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K.-H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, H. Iafolla, L. Iess, et al., Space Sci. Rev. 217, 90 (2021).

    Article  ADS  Google Scholar 

  31. S. I. Popel, A. P. Golub’, and L. M. Zelenyi, Phys. Plasmas 30, 043701 (2023).

    Article  ADS  Google Scholar 

  32. Yu. N. Izvekova, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 49, 912 (2023).

    Article  ADS  Google Scholar 

  33. Yu. N. Izvekova, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 49, 1214 (2023).

    Article  ADS  Google Scholar 

  34. D. L. Domingue, P. L. Koehn, R. M. Killen, A. L. Sprague, M. Sarantos, A. F. Cheng, E. T. Bradley, and W. E. McClintock, Space Sci. Rev. 131, 161 (2007).

    Article  ADS  Google Scholar 

  35. S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Sol. Syst. Res. 47, 419 (2013).

    Article  ADS  Google Scholar 

  36. A. González-Esparza, Space Sci. Rev. 97, 197 (2001).

    Article  ADS  Google Scholar 

  37. O. V. Khabarova, personal communication, 2022.

  38. K. M. Hiremath, Planet. Space Sci. 63–64, 8 (2012).

    Article  ADS  Google Scholar 

  39. R. J. L. Grard and J. K. E. Tunaley, J. Geophys. Res. 76, 2498 (1971).

    Article  ADS  Google Scholar 

  40. E. K. Kolesnikov and A. S. Manuilov, Astron. Zh. 59, 996 (1982).

    ADS  Google Scholar 

  41. A. P. Golub’ and S. I. Popel, JETP Lett. 113, 428 (2021).

    Article  ADS  Google Scholar 

  42. A. P. Golub’ and S. I. Popel, Plasma Phys. Rep. 47, 826 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popel, S.I., Izvekova, Y.N. & Golub’, A.P. On Anomalous Dissipation in Plasma of Dusty Mercury’s Exosphere. Plasma Phys. Rep. 50, 237–246 (2024). https://doi.org/10.1134/S1063780X23601761

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601761

Keywords:

Navigation