Skip to main content
Log in

Nonlinear Evolution of the Tearing Instability in a Thin Current Sheet

  • PLASMA INSTABILITIES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In plane current sheets (foils, or liners), which are thin in comparison with their skin depth, an instability may grow because parallel currents in different areas of these sheets are attracted that leads to compression of these areas and partition of the current sheets into threads. This work describes the study of the nonlinear tearing instability evolution for a 1D case, when all the principal quantities (surface current and mass densities, velocity, and the magnetic field component normal to the sheet surface) depend on the coordinate perpendicular to the current density vector only. A 1D system of equations has been obtained, which describes the magnetic field dynamics and the substance motion in current sheets, and a numerical technique based on the Lagrangian discretization of mass has been developed to solve 1D magnetic hydrodynamics problems. It is shown that, if the tearing instability is considered, small perturbations of currents, velocities and mass densities grow in accordance with the earlier found growth rates of small perturbations and later, when the perturbations are no longer small, a nonlinear growth stage comes. In this stage, the perturbations of the surface current density j and the surface mass density μ increase unlimitedly for a finite time period (apparently, according to power laws \(j\sim {{({{t}_{s}} - t)}^{{ - \alpha }}}\), \(\mu \sim {{({{t}_{s}} - t)}^{{ - \gamma }}}\), \({{t}_{s}}\) is the time, when these quantities become infinite); however the width of the current and mass density peaks tends to zero, so that the total current and total mass in the peaks of the current density and surface mass density decrease and tend to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).

    Article  ADS  Google Scholar 

  2. I. K. Aivazov, V. D. Vikharev, G. S. Volkov, L. B. Nikandrov, V. P. Smirnov, and V. Ya. Tsarfin, Sov. J. Plasma Phys. 14, 110 (1988).

    Google Scholar 

  3. R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, et al., Phys. Plasmas 5, 2105 (1998).

    Article  ADS  Google Scholar 

  4. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  5. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  6. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, E. V. Grabovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, G. S. Volkov, M. V. Zurin, and G. G. Zukakishvili, IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  7. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 046406 (2005).

  8. E. P. Yu, B. V. Oliver, D. B. Sinars, T. A. Mehlhorn, M. E. Cuneo, P. V. Sasorov, M. G. Haines, and S. V. Lebedev, Phys. Plasmas 14, 022705 (2007).

  9. F. S. Felber and N. Rostoker, Phys. Fluids 24, 1049 (1981).

    Article  ADS  Google Scholar 

  10. A. A. Samokhin, J. Appl. Mech. Tech. Phys. 29, 243 (1988).

    Article  ADS  Google Scholar 

  11. J. H. Hammer and D. D. Ryutov, Phys. Plasmas 6, 3302 (1999).

    Article  ADS  Google Scholar 

  12. S. F. Garanin, E. M. Kravets, and V. Yu. Dolinskiy, IEEE Trans. Plasma Sci. 48, 4279 (2020). https://doi.org/10.1109/TPS.2020.3034933

    Article  ADS  Google Scholar 

  13. S. A. Chaikovskii, V. I. Oreshkin, N. A. Labetskaya, I. M. Datsko, D. V. Rybka, V. A. Vankevich, and N. A. Ratakhin, Russ. Phys. J. 62, 1235 (2019).

  14. M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney, and J. R. Asay, J. Appl. Phys. 94, 4420 (2003). https://doi.org/10.1063/1.1604967

    Article  ADS  Google Scholar 

  15. R. W. Lemke, M. D. Knudson, C. A. Hall, T. A. Haill, M. P. Desjarlais, J. R. Asay, and T. A. Mehlhorn, Phys. Plasmas 10, 1092 (2003).

    Article  ADS  Google Scholar 

  16. J. Deng, W. Xie, S. Feng, M. Wang, H. Li, S. Song, M. Xia, J. Ce, A. He, Q. Tian, Y. Gu, Y. Guan, B. Wei, X. Huang, X. Ren, et al., Matter Radiat. Extremes 1, 48 (2016).

    Google Scholar 

  17. S. D. Kuznetsov and S. F. Garanin, in Proceedings of the 21st IEEE International Conference on Pulsed Power, Brighton, 2017, p. 362. https://doi.org/10.1109/PPC.2017.8291230

  18. L. M. Zelenyi and A. L. Taktakishvili, Sov. J. Plasma Phys. 7, 585 (1981).

    Google Scholar 

  19. L. M. Zelenyi and A. L. Taktakishvili, Sov. J. Plasma Phys. 10, 26 (1984).

    ADS  Google Scholar 

  20. L. M. Zeleny and A. L. Taktakishvili, Astrophys. Space Sci. 134, 185 (1987).

    Article  ADS  Google Scholar 

  21. L. M. Zeleny and A. L. Taktakishvili, Plasma Phys. Controlled Fusion 30, 663 (1988).

    Article  ADS  Google Scholar 

  22. M. Haines, J. Plasma Phys. 12, 1 (1974).

    Article  ADS  Google Scholar 

  23. M. Haines, Phys. Rev. Lett. 47, 917 (1981).

    Article  ADS  Google Scholar 

  24. V. V. Vikhrev and S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1986), Vol. 10, p. 425.

    Google Scholar 

  25. M. J. Sadowski, in Proceedings of the 12th Symposium on High Current Electronics., Ed. by G. Mesyats, B. Kovalchuk, and G. Remnev (Inst. of High Current Electronics, Sib. Branch, Russ. Acad. Sci., Tomsk, 2000), Vol. 2, p. 185.

  26. A. S. Kingsep, K. V. Chukbar, and V. V. Yan’kov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1990), Vol. 16, p. 243.

    Google Scholar 

  27. S. F. Garanin and E. M. Kravets, J. Appl. Mech. Tech. Phys. 63, 220 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Ott, Phys. Rev. Lett. 29, 1429 (1972).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. F. Garanin or E. M. Kravets.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.F., Kravets, E.M. Nonlinear Evolution of the Tearing Instability in a Thin Current Sheet. Plasma Phys. Rep. 49, 1261–1274 (2023). https://doi.org/10.1134/S1063780X23601190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601190

Keywords:

Navigation