Skip to main content
Log in

Dynamics of a Plasma Cloud Generated by a Compact Coaxial Gun upon Expansion into Vacuum and Large-Volume Background Plasma in an External Magnetic Field

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of experiments on injection of dense plasma clouds created by a small-scale coaxial generator into vacuum and large-volume background plasma in an ambient magnetic field are presented. The regime of an “infinite” background medium that allows studying the plasma-cloud dynamics on the scale of about one meter in the directions perpendicular and parallel to a quasi-uniform magnetic field is realized on “Krot” plasma device. The dynamics of the diamagnetic cavity appearing upon magnetic-field expulsion by a plasma blob, the electromagnetic noise appearing in the cavity, along with the evolution of plasma-cloud structure during injection and at the stage of its decay, were studied. It is demonstrated that the key properties of the cloud dynamics that are typical of the active space and high-energy laboratory experiments, including complete expulsion of the magnetic field from the cloud and development of the flute instability at its boundary, are reproduced at low injection speed (below 30 km/s) and low plasma energy (on the order of 0.1 J).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. J. Marshall, Phys. Fluids 3, 134 (1960).

    Article  ADS  Google Scholar 

  2. P. I. Blinov and P. A. Cheremnykh, Teplofiz. Vys. Temp. 5, 388 (1967).

    Google Scholar 

  3. T. Oboyashi, Planet. Space Sci. 10, 47 (1963).

    Article  ADS  Google Scholar 

  4. P. R. Albee and D. P. Kanellakos, J. Geophys. Res. 73, 1039 (1968).

    Article  ADS  Google Scholar 

  5. A. Burrows, Nature 403, 727 (2000).

    Article  ADS  Google Scholar 

  6. D. S. De Young, Science 252, 389 (1991).

    Article  ADS  Google Scholar 

  7. G. A. Wurden, S. C. Hsu, T. P. Intrator, T. C. Grabowski, J. H. Degnan, M. Domonkos, P. J. Turchi, E. M. Campbell, D. B. Sinars, M. C. Herrmann, R. Betti, B. S. Bauer, I. R. Lindemuth, R. E. Siemon, R. L. Miller, et al., J. Fusion Energy 35, 69 (2016).

    Article  Google Scholar 

  8. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Beard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdorfer, D. P. Higginson, F. Kroll, S. A. Pikuz, et al., Science 346, 325 (2014).

    Article  ADS  Google Scholar 

  9. G. Haerendel, Front. Astron. Space Sci. 6, 00029 (2019). https://doi.org/10.3389/fspas.2019.00029

    Article  ADS  Google Scholar 

  10. B. G. Gavrilov, A. I. Podgorny, I. M. Podgorny, D. B. Sobyanin, J. I. Zetzer, R. E. Erlandson, C. I. Meng, and B. J. Stoyanov, Geophys. Res. Lett. 26, 1549 (1999).

    Article  ADS  Google Scholar 

  11. R. E. Erlandson, C. I. Meng, P. K. Swaminathan, C. K. Kumar, V. K. Dogra, B. J. Stoyanov, B. G. Gavrilov, Y. Kiselev, J. I. Zetzer, H. C. Stenbaek-Nielsen, K. A. Lynch, R. F. Pfaff, P. A. Delamere, S. Bounds, and N. A. Gatsonis, J. Spacecr. Rockets 41, 483 (2004).

    Article  ADS  Google Scholar 

  12. N. I. Dzubenko, A. P. Zhilinsky, I. A. Zhulin, I. S. Ivchenko, A. A. Molotai, V. A. Rozhansky, Yu. Ya. Ruzhin, V. S. Skomarovsky, and L. D. Tsendin, Planet. Space Sci. 31, 849 (1983).

    Article  ADS  Google Scholar 

  13. G. Holmgren, R. Bostrom, M. C. Kelley, P. M. Kintner, R. Lundin, U. V. Fahleson, E. A. Bering, and W. R. Sheldon, J. Geophys. Res. 85, 5043 (1980).

    Article  ADS  Google Scholar 

  14. P. A. Bernhardt, R. A. Roussel-Dupre, M. B. Pongratz, G. Haerendel, A. Valenzuela, D. A. Gurnett, and R. R. Anderson, J. Geophys. Res. 92, 5777 (1987).

    Article  ADS  Google Scholar 

  15. R. B. Torbert, C. A. Kletzing, K. Liou, and D. Rau, Geophys. Res. Lett. 19, 973 (1992).

    Article  ADS  Google Scholar 

  16. L. Prech, Y. Y. Ruzhin, V. S. Dokukin, Z. Nemecek, and J. Safrankova, Front. Astron. Space Sci. 5, 00046 (2018). https://doi.org/10.3389/fspas.2018.00046

    Article  ADS  Google Scholar 

  17. G. Haerendel and R. Z. Sagdeev, Adv. Space Res. 1, 29 (1981).

    Article  ADS  Google Scholar 

  18. S. G. Bannov, A. M. Zhitlukhin, A. A. Motorin, E. L. Stupitskii, A. S. Kholodov, and V. E. Cherkovets, Geomagn. Aeron. 59, 318 (2019).

    Article  ADS  Google Scholar 

  19. A. S. Belov, I. A. Vdovichenko, and I. A. Kurina, Geomagn. Aeron. 57, 591 (2017).

    Article  ADS  Google Scholar 

  20. H. W. Friedman and R. M. Patrick, Phys. Fluids 14, 1889 (1971).

    Article  ADS  Google Scholar 

  21. D. L. Morse and W. W. Destler, J. Geophys. Res. 78, 7417 (1973).

    Article  ADS  Google Scholar 

  22. I. E. Garkusha, D. G. Solyakov, V. V. Chebotarev, V. A. Makhlai, and N. V. Kulik, Plasma Phys. Rep. 45, 166 (2019).

    Article  ADS  Google Scholar 

  23. Y. P. Zakharov, IEEE Trans. Plasma Sci. 31, 1243 (2003).

    Article  ADS  Google Scholar 

  24. W. Gekelman, M. Van Zeeland, S. Vincena, and P. Pribyl, J. Geophys. Res. 108, 1281 (2003).

    Google Scholar 

  25. A. N. Mostovych, B. H. Ripin, and J. A. Stamper, Phys. Rev. Lett. 62, 2837 (1989).

    Article  ADS  Google Scholar 

  26. D. B. Schaeffer, L. R. Hofer, E. N. Knall, P. V. Heuer, C. G. Constantin, and C. Niemann, High Power Laser Sci. Eng. 6, E17 (2018).

  27. T. C. Underwood, K. T. Loebner, V. A. Miller, and M. A. Cappelli, Sci. Rep. 9, 2588 (2019).

    Article  ADS  Google Scholar 

  28. Y. Zhang, D. M. Fisher, M. Gilmore, S. C. Hsu, and A. G. Lynn, Phys. Plasmas 25, 055709 (2018).

  29. V. S. Beskin, V. I. Krauz, and S. A. Lamzin, Phys.—Usp. 66, 327 (2023).

    Article  Google Scholar 

  30. P. M. Bellan, J. Plasma Phys. 84, 755840501 (2018).

  31. H. de la Fuente and H. K. Forsen, Rev. Sci. Instrum. 42, 1453 (1971).

    Article  ADS  Google Scholar 

  32. C. W. Mendel, Jr., D. M. Zagar, G. S. Mills, S. Humphries, and S. A. Goldstein, Rev. Sci. Instrum. 51, 1641 (1980).

    Article  ADS  Google Scholar 

  33. A. A. Zherlitsyn, B. M. Koval’chuk, and N. N. Pedin, Instrum. Exp. Tech. 57, 453 (2014).

    Article  Google Scholar 

  34. B. G. Gavrilov, S. A. Kozhukhov, and D. B. Sobyanin, Tech. Phys. 39, 543 (1994).

    Google Scholar 

  35. F. D. Witherspoon, A. Case, S. J. Messer, R. Bomgardner, M. W. Phillips, S. Brockington, and R. Elton, Rev. Sci. Instrum. 80, 083506 (2009).

  36. M. E. Gushchin, S. V. Korobkov, V. A. Terekhin, A. V. Strikovskii, V. I. Gundorin, I. Yu. Zudin, N. A. Aidakina, and A. S. Nikolenko, JETP Lett. 108, 391 (2018).

    Article  ADS  Google Scholar 

  37. S. V. Korobkov, M. E. Gushchin, V. I. Gundorin, I. Yu. Zudin, N. A. Aidakina, A. V. Strikovskii, and A. S. Nikolenko, Tech. Phys. Lett. 45, 228 (2019).

    Article  ADS  Google Scholar 

  38. S. V. Korobkov, A. S. Nikolenko, M. E. Gushchin, A. V. Strikovskii, I. Yu. Zudin, N. A. Aidakina, I. F. Shaikhislamov, M. S. Rumenskikh, R. S. Zemskov, and M. V. Starodubtsev, Astron. Rep. 67, 93 (2023).

    Article  ADS  Google Scholar 

  39. K. Burdonov, R. Bonito, T. Giannini, N. Aidakina, C. Argiroffi, J. Beard, S. N. Chen, A. Ciardi, V. Ginzburg, K. Gubskiy, V. Gundorin, M. Gushchin, A. Kochetkov, S. Korobkov, A. Kuzmin, et al., Astron. Astrophys. 648, A81 (2021).

    Article  Google Scholar 

  40. N. A. Aidakina, A. G. Galka, V. I. Gundorin, M. E. Gushchin, I. Yu. Zudin, S. V. Korobkov, A. V. Kostrov, K. N. Loskutov, M. M. Mogilevskii, S. E. Priver, A. V. Strikovskii, D. V. Chugunin, and D. V. Yanin, Geomagn. Aeron. 58, 314 (2018).

    Article  ADS  Google Scholar 

  41. S. B. Leonov and G. A. Luk’yanov, J. Appl. Mech. Tech. Phys. 35, 653 (1994).

  42. A. A. Solov’ev, K. F. Burdonov, A. V. Kotov, S. E. Perevalov, R. S. Zemskov, V. N. Ginzburg, A. A. Kochetkov, A. A. Kuz’min, A. A. Shaikin, I. A. Shaikin, E. A. Khazanov, I. V. Yakovlev, A. G. Luchinin, M. V. Morozkin, M. D. Proyavin, et al., Radiophys. Quantum Electron. 63, 876 (2020).

    Article  ADS  Google Scholar 

  43. H.-B. Tang, G.-Y. Hu, Y.-H. Liang, T. Tao, Y.-L. Wang, P. Hu, B. Zhao, and J. Zheng, Plasma Phys. Controlled Fusion 60, 055005 (2018).

  44. J. M. Levesque, A. S. Liao, P. Hartigan, R. P. Young, M. Trantham, S. Klein, W. Gray, M. Manuel, G. Fiksel, J. Katz, C. Li, A. Birkel, P. Tzeferacos, E. C. Hansen, B. Khiar, et al., Phys. Plasmas 29, 012106 (2022).

  45. G. Revet, S. N. Chen, R. Bonito, B. Khiar, E. Filippov, C. Argiroffi, D. P. Higginson, S. Orlando, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, D. Khaghani, K. Naughton, H. Pépin, et al., Sci. Adv. 3, e1700982 (2017).

  46. Yu. P. Zakharov, A. M. Orishich, A. G. Ponomarenko, and V. G. Posukh, Sov. J. Plasma Phys. 12, 674 (1986).

    Google Scholar 

  47. B. H. Ripin, J. D. Huba, E. A. McLean, C. K. Manka, T. Peyser, H. R. Burris, and J. Grun, Phys. Fluids B 5, 3491 (1993).

    Article  ADS  Google Scholar 

  48. J. Bonde, S. Vincena, and W. Gekelman, Phys. Plasmas 25, 042110 (2018).

  49. M. VanZeeland and W. Gekelman, Phys. Plasmas 11, 320 (2004).

    Article  ADS  Google Scholar 

  50. Yu. P. Raizer, Prikl. Mekh. Tekh. Fiz., No. 6, 19 (1963).

  51. T. Pisarczyk, B. A. Bryunetkin, A. Ya. Faenov, A. Farynski, H. Fiedorowicz, M. Koshevoy, R. Miklaszewski, M. Mroczkowski, M. V. Osipov, P. Parys, I. Skobelev, and M. Szczurek, Phys. Scr. 50, 72 (1994).

    Article  ADS  Google Scholar 

  52. S. Okada, K. Sato, and T. Sekiguchi, J. Phys. Soc. Jpn. 46, 355 (1979).

    Article  ADS  Google Scholar 

  53. A. Colette and W. Gekelman, Phys. Plasmas 18, 055705 (2011).

  54. T. Hurtig, N. Brenning, and M. Raadu, Phys. Plasmas 11, L33 (2004).

    Article  ADS  Google Scholar 

  55. R. L. Smith and N. Brice, J. Geophys. Res. 69, 5029 (1964).

    Article  ADS  Google Scholar 

  56. Yu. P. Zakharov, V. M. Antonov, E. L. Boyarintsev, A. V. Melekhov, B. G. Posukh, I. F. Shaikhislamov, and V. V. Pikalov, Plasma Phys. Rep. 32, 183 (2006).

    Article  ADS  Google Scholar 

  57. D. Winske, Phys. Fluids B 1, 1900 (1989).

    Article  ADS  Google Scholar 

  58. G. Dimonte and L. Wiley, Phys. Rev. Lett. 67, 1755 (1991).

    Article  ADS  Google Scholar 

  59. I. P. Paramonik, A. V. Divin, I. F. Shaikhislamov, and V. S. Semenov, in 18th Annual Conference “Plasma Physics in Solar System,” Moscow, 2023, Book of Abstracts, p. 202.

  60. J. D. Huba, Phys. Rev. Lett. 72, 2033 (1994).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.I. Gundorin for development and fabrication of the high-voltage equipment.

Funding

The experiments were carried out using unique scientific facility “Complex of Large-Scale Geophysical Systems of the Institute of Applied Physics of the Russian Academy of Sciences.” This research was supported within the framework of the 10th project of the National Center for Physics and Mathematics (NCPM) “Experimental Laboratory Astrophysics and Geophysics” and the State Assignment no. 0030-2021-0028 “Laboratory and Numerical Modeling of Nonstationary Plasma Processes in the Atmosphere and Space.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nikolenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, A.S., Gushchin, M.E., Korobkov, S.V. et al. Dynamics of a Plasma Cloud Generated by a Compact Coaxial Gun upon Expansion into Vacuum and Large-Volume Background Plasma in an External Magnetic Field. Plasma Phys. Rep. 49, 1284–1299 (2023). https://doi.org/10.1134/S1063780X23601141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601141

Keywords:

Navigation