Skip to main content
Log in

Numerical Analysis of the Influence of Evaporation of the High- and Low-Melting-Point Anode Materials on Parameters of a Microarc Discharge

  • PLASMA–SURFACE INTERACTIONS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We present the results of numerical studies of the influence of evaporation of anode material on the main characteristics of an arc discharge. Calculations were carried out for an arc discharge in helium as a buffer gas with high-melting-point (using graphite as an example) and low-melting-point (using copper as an example) anodes. The dependences of the main arc-discharge parameters on current density are presented. It is demonstrated that intense evaporation of particles of the anode material into the discharge gap occurs upon reaching the melting point of the anode surface. As a result, the plasma-forming ion is replaced, i.e., the carbon ion in the case of the graphite anode or a copper ion in the case of the copper anode becomes dominant. In the process, a jump in the potential is observed in the dependence of voltage on current density (the volt–ampere characteristic, VAC). Distribution of the main plasma parameters along the discharge gap is presented for different points in the VAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1997; Intellekt, Dolgoprudnyi, 2009).

  2. G. N. Rokhlin, Gas-Discharge Light Sources (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  3. A. Fridman, A. Gutsol, and Y. I. Cho, Adv. Heat Transfer 40, 1 (2007).

    Article  Google Scholar 

  4. B. Qin, T. Zhang, H. Chen, and Y. Ma, Carbon 102, 494 (2016).

    Article  Google Scholar 

  5. Y. S. Park, S. Kodama, and H. Sekiguchi, Nanomaterials 11, 2214 (2021).

    Article  Google Scholar 

  6. V. Vekselman, Y. Raitses, and M. N. Shneider, Phys. Rev. E 99, 063205 (2019).

  7. B. A. Timerkaev, A. A. Kaleeva, D. B. Timerkaeva, and A. I. Saifutdinov, High Energy Chem. 53, 390 (2019).

    Article  Google Scholar 

  8. M. B. Shavelkina, P. P. Ivanov, A. N. Bocharov, and R. H. Amirov, Plasma Chem. Plasma Process. 41, 171(2021).

    Article  Google Scholar 

  9. M. Nowack, S. Leidich, D. Reuter, S. Kurth, M. Kuechler, A. Bertz, and T. Gessner, Sens. Actuators, A 188, 495 (2012).

    Article  Google Scholar 

  10. S. Jhavar, C. P. Paul, and N. K. Jain, JOM 68, 1801 (2016).

    Article  Google Scholar 

  11. M. Keidar and I. I. Beilis, J. Appl. Phys. 106, 103304 (2009).

  12. A. Lebouvier, S. A. Iwarere, D. Ramjugernath, and L. Fulcheri, J. Phys. D: Appl. Phys. 46, 145203 (2013).

  13. N. A. Timofeev, V. S. Sukhomlinov, G. Zissis, I. Yu. Mukharaeva, D. V. Mikhaylov, A. S. Mustafaev, P. Dupuis, D. Q. Solikhov, and V. S. Borodina, IEEE Trans. Plasma Sci. 49, 2387 (2021).

    Article  ADS  Google Scholar 

  14. A. Maharaj, A. D’Angola, G. Colonna, and S. A. Iwarere, Front. Phys. 9, 748113 (2021). https://doi.org/10.3389/fphy.2021.748113

  15. J. Musielok, Beitr. Plasmaphys. 17, 135 (1977).

    Article  ADS  Google Scholar 

  16. L. E. Cram, L. Poladian, and G. Roumeliotis, J. Phys. D: Appl. Phys. 21, 418 (1988).

    Article  ADS  Google Scholar 

  17. N. A. Almeida, M. S. Benilov, and G. V. Naidis, J. Phys. D: Appl. Phys. 41, 245201 (2008).

  18. N. A. Almeida, M. S. Benilov, U. Hechtfischer, and G. V. Naidis, J. Phys. D: Appl. Phys. 42, 045210 (2009).

  19. S. Kolev and A. A. Bogaerts, Plasma Sources Sci. Technol. 24, 015025 (2014).

  20. A. I. Saifutdinov, I. I. Fairushin, and N. F. Kashapov, JETP Lett. 104, 180 (2016).

    Article  ADS  Google Scholar 

  21. S. I. Eliseev, A. A. Kudryavtsev, H. Liu, Z. Ning, D. Yu, and A. S. Chirtsov, IEEE Trans. Plasma Sci. 44, 2536 (2016).

    Article  ADS  Google Scholar 

  22. I. L. Semenov, I. V. Krivtsun, and U. Reisgen, J. Phys. D: Appl. Phys. 49, 105204 (2016).

  23. N. A. Almeida, M. D. Cunha, and M. S. Benilov, J. Phys. D: Appl. Phys. 50, 385203 (2017).

  24. S. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang, and A. Bogaerts, Plasma Processes Polym. 14, 1600110 (2017).

  25. A. Khrabry, I. D. Kaganovich, V. Nemchinsky, and A. Khodak, Phys. Plasmas 25, 013521 (2018).

  26. A. Khrabry, I. D. Kaganovich, V. Nemchinsky, and A. Khodak, Phys. Plasmas 25, 013522 (2018).

  27. M. Baeva, D. Loffhagen, M. M. Becker, and D. Uhrlandt, Plasma Chem. Plasma Process. 39, 949 (2019).

    Article  Google Scholar 

  28. M. Baeva, D. Loffhagen, and D. Uhrlandt, Plasma Chem. Plasma Process. 39, 1359 (2019).

    Article  Google Scholar 

  29. M. S. Benilov, J. Phys. D: Appl. Phys. 53, 013002 (2019).

  30. A. I. Saifutdinov, B. A. Timerkaev, and A. A. Saifutdinova, JETP Lett. 112, 405 (2020).

    Article  ADS  Google Scholar 

  31. A. I. Saifutdinov, J. Appl. Phys. 129, 093302 (2021).

  32. A. I. Saifutdinov, Plasma Sources Sci. Technol. 31, 094008 (2022).

  33. M. Baeva, M. S. Benilov, T. Zhu, H. Testrich, T. Kewitz, and R. Foest, J. Phys. D: Appl. Phys. 55, 365202 (2022).

  34. D. F. N. Santos, N. A. Almeida, M. Lisnyak, J. P. Gonnet, and M. S. Benilov, Phys. Plasmas 29, 043503 (2022).

  35. M. Baeva, R. Methling, and D. Uhrlandt, Plasma Phys. Technol. 8, 1 (2021).

    Article  Google Scholar 

  36. W.-Z. Wang, M.-Z. Rong, A. B. Murphy, Y. Wu, J. W. Spencer, and J. D. Yan, J. Phys. D: Appl. Phys. 44, 355207 (2011).

  37. Y. Cressault, A. B. Murphy, Ph. Teulet, A. Gleizes, and M. Schnick, J. Phys. D: Appl. Phys. 46, 415207 (2013).

  38. O. Knake and I. N. Stranskii, Usp. Fiz. Nauk 68, 261 (1959).

    Article  Google Scholar 

  39. R. J. Thorn and G. H. Winslow, J. Chem. Phys. 26, 186 (1957).

    Article  ADS  Google Scholar 

  40. T. Nielsen, A. Kaddani, and M. S. Benilov, J. Phys. D: Appl. Phys. 34, 2016 (2001).

    Article  ADS  Google Scholar 

  41. V. Nemchinsky, J. Appl. Phys. 130, 103304 (2021).

  42. K. Kutasi, P. Hartmann, and Z. Donkó, J. Phys. D: Appl. Phys. 34, 3368 (2001).

    Article  ADS  Google Scholar 

  43. K. Kutasi, P. Hartmann, G. Bánó, and Z. Donkó, Plasma Sources Sci. Technol. 14, S1 (2005).

    Article  ADS  Google Scholar 

  44. E. A. Bogdanov, K. D. Kapustin, A. A. Kudryavtsev, and A. S. Chirtsov, Tech. Phys. 55, 1430 (2010).

    Article  Google Scholar 

  45. Q. Wang, D. J. Economou, and V. M. Donnelly, J. Appl. Phys. 100, 023301 (2006).

  46. R. Deloche, P. Monchicourt, M. Cheret, and F. Lambert, Phys. Rev. A: At., Mol., Opt. Phys. 13, 1140 (1976).

    Article  ADS  Google Scholar 

  47. A. I. Saifutdinov, A. R. Sorokina, V. K. Boldysheva, E. R. Latypov, and A. A. Saifutdinova, High Energy Chem. 56, 477 (2022).

    Article  Google Scholar 

  48. A. R. Mansour and K. Hara, J. Phys. D: Appl. Phys. 52, 105204 (2019).

  49. A. Bogaerts, R. Gijbels, and R. Carman, Spectrochim. Acta, Part B 53, 1679 (1998).

    Article  ADS  Google Scholar 

  50. A. Bogaerts and R. Gijbels, J. Appl. Phys. 92, 6408 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 22-22-20099, https://rscf.ru/project/22-22-20099/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Saifutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifutdinov, A.I., Germanov, N.P., Sorokina, A.R. et al. Numerical Analysis of the Influence of Evaporation of the High- and Low-Melting-Point Anode Materials on Parameters of a Microarc Discharge. Plasma Phys. Rep. 49, 1187–1198 (2023). https://doi.org/10.1134/S1063780X23601104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601104

Keywords:

Navigation