Skip to main content
Log in

Nonlinear Dust Acoustic Waves in Exosphere of Mercury

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The exosphere of Mercury, which has much in common with the exosphere of the Moon, can also contain suspended dust particles, which, under the action of intense solar radiation, acquire positive charges and form one of the components of the dusty plasma system. In addition to dust particles, there are photoelectrons above the planet surface, formed as a result of interaction of solar radiation with the planet surface, as well as with suspended dust particles. Mercury, unlike the Moon, has its own magnetosphere, which affects the parameters of dusty plasma system. The dusty plasma parameters near the Mercury surface can vary depending on the distance from the planet to the Sun, which considerably changes when the planet moves along the elongated orbit, and also depending on the localization of the region under consideration on the planet surface. Thus, near the magnetic poles, the solar wind can reach the planet surface, which must be taken into account when determining the plasma parameters. Far from the magnetic poles, the effect of the solar wind can be neglected. In the dusty plasma near the surface of Mercury, one can expect the development of linear and nonlinear wave processes. In this paper, nonlinear waves are considered, namely, dust acoustic solitons and nonlinear periodic waves. The profiles of potentials of high-amplitude solitons and nonlinear periodic waves are obtained, as well as the soliton amplitudes as functions of the altitude above the planet surface and soliton velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. O. E. Berg, F. F. Richardson, and H. Burton, in NASA Report No. SP-330 (NASA, Washington, DC, 1973), p. 16-1. https://history.nasa.gov/alsj/a17/as17psr.pdf.

    Google Scholar 

  2. O. E. Berg, H. Wolf, and J. Rhee, in Interplanetary Dust and Zodiacal Light, Ed. by H. Elsässer and H. Fechtig, Lecture Notes in Physics, Vol. 48 (Springer, New York, 1976), p. 233.

    Google Scholar 

  3. A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Rébérac, L. Joly, and J. L. Bertaux, Icarus 223, 892 (2013).

    Article  ADS  Google Scholar 

  4. A. A. Fedorova, F. Montmessin, A. V. Rodin, O. I. Korablev, A. Määttänen, L. Maltagliati, and J. L. Bertaux, Icarus 231, 239 (2014).

    Article  ADS  Google Scholar 

  5. F. Montmessin, J. L. Bertaux, E. Quémerais, O. Korablev, P. Rannou, F. Forget, S. Perriera, D. Fussend, S. Lebonnoisc, and A. Rébérac, Icarus 183, 403 (2006).

    Article  ADS  Google Scholar 

  6. F. Montmessin, B. Gondet, J. P. Bibring, Y. Langevin, P. Drossart, F. Forget, and T. Fouchet, J. Geophys. Res.: Planets 112, E11S90 (2007).

  7. Yu. N. Izvekova and S. I. Popel, Plasma Phys. Rep. 43, 1172 (2017).

    Article  ADS  Google Scholar 

  8. A. P. Golub’ and S. I. Popel, JETP Lett. 113, 428 (2021).

    Article  ADS  Google Scholar 

  9. A. P. Golub’ and S. I. Popel, Plasma Phys. Rep. 47, 826 (2021).

    Article  ADS  Google Scholar 

  10. A. V. Zakharov, S. I. Popel, I. A. Kuznetsov, N. D. Borisov, E. V. Rosenfeld, Yu. Skorov, and L. M. Zelenyi, Phys. Plasmas 29, 110501 (2022).

  11. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  12. NASA Mission Mariner 10. https://solarsystem.nasa.gov/missions/mariner-10/in-depth/. Cited June 29, 2023.

  13. S. C. Solomon, R. L. McNutt, Jr., R. E. Gold, and D. L. Domingue, Space Sci. Rev. 131, 3 (2007).

    Article  ADS  Google Scholar 

  14. W. Exner, S. Simon, D. Heyner, and U. Motschmann, J. Geophys. Res.: Space Phys. 125, e2019JA027691 (2020).

  15. A. L. Broadfoot, D. E. Shemansky, and S. Kumar, Geophys. Res. Lett. 3, 577 (1976).

    Article  ADS  Google Scholar 

  16. A. Potter and T. Morgan, Science 229, 651 (1985).

    Article  ADS  Google Scholar 

  17. T. A. Bida, R. M. Killen, and T. H. Morgan, Nature 404, 159 (2000).

    Article  ADS  Google Scholar 

  18. N. F. Ness, K. W. Behannon, R. P. Lepping, and Y. C. Whang, J. Geophys. Res. 80, 2708 (1975).

    Article  ADS  Google Scholar 

  19. I. I. Alexeev, E. S. Belenkaya, J. A. Slavin, H. Korth, B. J. Anderson, D. N. Baker, S. A. Boardsen, C. L. Johnson, M. E. Purucker, M. Sarantos, and S. C. Solomon, Icarus 209, 23 (2010).

    Article  ADS  Google Scholar 

  20. S. Stanley and G. A. Glatzmaier, Space Sci. Rev. 152, 617 (2010).

    Article  ADS  Google Scholar 

  21. S. I. Popel, A. P. Golub’, and L. M. Zelenyi, Phys. Plasmas 30, 043701 (2023).

  22. Yu. N. Izvekova, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 49, 912 (2023).

    Article  ADS  Google Scholar 

  23. S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Sol. Syst. Res. 47, 419 (2013).

    Article  ADS  Google Scholar 

  24. S. I. Popel, G. E. Morfll, P. K. Shukla, and H. Thomas, J. Plasma Phys. 79, 1071 (2013).

    Article  ADS  Google Scholar 

  25. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015).

  26. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Fizmatlit, Moscow, 2002; Butterworth-Heinemann, Oxford, 2002).

  27. G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. I. Popel, and M. Y. Yu, J. Plasma Phys. 76, 267 (2010).

    Article  ADS  Google Scholar 

  28. Yu. N. Izvekova, T. I. Morozova, and S. I. Popel, IEEE Trans. Plasma Sci. 46, 731 (2018).

    Article  ADS  Google Scholar 

  29. T. I. Morozova, S. I. Kopnin, and S. I. Popel, Plasma Phys. Rep. 41, 799 (2015).

    Article  ADS  Google Scholar 

  30. S. I. Popel and T. I. Morozova, Plasma Phys. Rep. 43, 566 (2017).

    Article  ADS  Google Scholar 

  31. S. I. Popel, A. I. Kassem, Yu. N. Izvekova, and L. M. Zelenyi, Phys. Lett. A 384, 126627 (2020).

  32. S. I. Kopnin and S. I. Popel, Tech. Phys. Lett. 47, 455 (2021).

    Article  ADS  Google Scholar 

  33. Yu. N. Izvekova and S. I. Popel, Plasma Phys. Rep. 48, 1199 (2022).

    Article  ADS  Google Scholar 

  34. K. Hashimoto, M. Hashitani, Y. Kasahara, Y. Omura, M. N. Nishino, Y. Saito, S. Yokota, T. Ono, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, and F. Takahashi, Geophys. Res. Lett. 37, L19204 (2010).

  35. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Geophys. Res. Lett. 21, 2915 (1994).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Izvekova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekova, Y.N., Popel, S.I. & Golub’, A.P. Nonlinear Dust Acoustic Waves in Exosphere of Mercury. Plasma Phys. Rep. 49, 1214–1219 (2023). https://doi.org/10.1134/S1063780X23601062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601062

Keywords:

Navigation