Skip to main content
Log in

Parameters of Surface Microwave Discharge Initiated by the Passage of a Gyrotron Microwave Pulse through a Quartz Plate with Embedded Metal Particles

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of an experimental study of the initiation, development and maintenance of a plasma surface discharge initiated by microwave (microwave) radiation of a gyrotron (75 GHz, 300 kW, 6 ms) in air under normal conditions on the surface of a quartz substrate with metal inclusions are presented. It is shown that the velocity of the propagation of the discharge ionization front reaches 40 m/s, which corresponds to the thermal conduction propagation mechanism. In this case, the maximum calculated gas temperature of the plasma reaches 5500 K, which leads to the sublimation of metal inclusions. For the first time, the plasma parameters of a surface microwave discharge on metal-dielectric targets, which have been used in various aeroplasma and plasma-chemical applications, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, in Plasma Physics and Plasma Electronics, Ed. by L. M. Kovrizhnykh (Nauka, Moscow, 1985; Nova Science, Commack, NY, 1985).

  2. S. V. Golubev, S. I. Gritsinin, V. G. Zorin, I. A. Kossyi, and V. E. Semenov, in High-Frequency Discharges in Wave Fields, Ed. by A. G. Litvak (Inst. Prikl. Fiz. Akad. Nauk SSSR, Gorky, 1988), p. 136 [in Russian].

  3. Yu. Ya. Brodskii, I. P. Venediktov, S. V. Golubev, V. G. Zorin, and I. A. Kossyi, Sov. Tech. Phys. Lett. 10, 77 (1984).

    Google Scholar 

  4. K. Tabata, Y. Harada, Y. Nakamura, K. Komurasaki, H. Koizumi, T. Kariya, and R. Minami, J. Appl. Phys. 127, 063301 (2020). https://doi.org/10.1063/1.5144157

  5. Yu. P. Raizer, Laser Spark and Discharge Propagation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  6. G. M. Batanov, N. K. Berezhetskaya, I. A. Kossyi, A. N. Magunov, and V. P. Silakov, Eur. Phys. J. Appl. Phys. 26, 11 (2004). https://doi.org/10.1051/epjap:2004016

    Article  ADS  Google Scholar 

  7. G. M. Batanov, S. I. Gritsinin, and I. A. Kossyi, J. Phys. D: Appl. Phys. 35, 2687 (2002).

    Article  ADS  Google Scholar 

  8. N. K. Berezhetskaya, V. Kop’ev, I. A. Kossyi, M. Misakyan, I. M. Taktakishvili, S. Temchin, and Y. D. Lee, Eur. Phys. J. Appl. Phys. 42, 327 (2008). https://doi.org/10.1051/epjap:2008074

    Article  ADS  Google Scholar 

  9. M. Takahashi and K. Komurasaki, Adv. Phys.: X 3, 1417744 (2018). https://doi.org/10.1080/23746149.2017.1417744

  10. V. M. Shibkov, Moscow Univ. Phys. Bull. 74, 421 (2019). https://doi.org/10.3103/S002713491905014X

    Article  ADS  Google Scholar 

  11. V. I. Zhukov, D. M. Karfidov, and K. F. Sergeichev, Plasma Phys. Rep. 46, 837 (2020). https://doi.org/10.1134/S1063780X20080127

    Article  ADS  Google Scholar 

  12. G. M. Batanov, N. K. Berezhetskaya, I. A. Kossyi, and A. N. Magunov, Plasma Phys. Rep. 32, 521 (2006).

    Article  ADS  Google Scholar 

  13. Z. A. Zakletskii, N. N. Skvortsova, V. D. Stepakhin, and D. V. Malakhov, J. Phys.: Conf. Ser. 2055, 012013 (2021). https://doi.org/10.1088/1742-6596/2055/1/012013

  14. A. A. Belevtsev, D. I. Kavyrshin, M. A. Sargsyan, V. F. Chinnov, A. V. Efimov, and V. V. Shcherbakov, J. Phys. D: Appl. Phys. 51, 484002 (2018). https://doi.org/10.1088/1361-6463/aadccc

  15. S. I. Inshakov, V. V. Skvortsov, V. A. Shakhatov, E. D. Kudryavtseva, and A. A. Uspenskii, High Temp. 60, 148 (2022).https://doi.org/10.1134/S0018151X22010345

  16. A. L. Vikharev, A. M. Gorbachev, and D. B. Radishev, J. Phys. D: Appl. Phys. 52, 014001 (2019). https://doi.org/10.1088/1361-6463/aae3a3

  17. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  18. S. C. Schaub, J. S. Hummelt, W. C. Guss, M. A. Shapiro, and R. J. Temkin, Phys. Plasmas 23, 083512 (2016). https://doi.org/10.1063/1.4959171

  19. G. M. Batanov, N. K. Berezhetskaya, E. F. Bol’shakov, A. A. Gorbunov, A. A. Dorofeyuk, V. I. Konov, V. A. Kope’ev, I. A. Kossyi, and A. Yu. Kostinskii, Plasma Sources Sci. Technol. 2, 164 (1993). https://doi.org/10.1088/0963-0252/2/3/006

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Zakletskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakletskii, Z.A., Malakhov, D.V. Parameters of Surface Microwave Discharge Initiated by the Passage of a Gyrotron Microwave Pulse through a Quartz Plate with Embedded Metal Particles. Plasma Phys. Rep. 49, 1228–1236 (2023). https://doi.org/10.1134/S1063780X23601001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601001

Keywords:

Navigation