Skip to main content
Log in

Double Dust Structures in Different Stratum Phases in Moderate Magnetic Fields

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Three-dimensional plasma-dust formations consisting of calibrated dust particles differing in sizes and material densities are studied. The characteristic features of the structures formation in stratified glow discharge were studied, as well as their shapes and dynamics in the external magnetic fields. From several types of powders, the spatially separated double structures were obtained, which filled the dust trap, being located in different stratum phases. For each part of the structure, the average rotational velocities were obtained as functions of the magnetic field. In the range, in which the rotation mechanism depends on the particle size and the ion drag force is dominant, the rotational velocity was numerically estimated with allowance for the parameters variation along the stratum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Complex and Dusty Plasmas: From Laboratory to Space, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, and H. M. Thomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  3. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys.–Usp. 47, 447 (2004).

    Article  Google Scholar 

  4. Introduction to Complex Plasma, Ed. by M. Bonitz, N. Horing, and P. Ludwig (Springer, Berlin, 2010).

    MATH  Google Scholar 

  5. U. Konopka, L. Ratke, and H. M. Thomas, Phys. Rev. Lett. 79, 1269 (1997).

    Article  ADS  Google Scholar 

  6. E. Thomas, Jr., New J. Phys. 5, 45 (2003).

    Article  Google Scholar 

  7. K. R. Sütterlin, A. Wysocki, A. V. Ivlev, C. Räth, H. M. Thomas, M. Rubin-Zuzic, W. J. Goedheer, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F. Petrov, G. E. Morfill, and H. Löwen, Phys. Rev. Lett. 102, 085003 (2009).

  8. Yu. Golubovskii, V. Karasev, and A. Kartasheva, Plasma Sources Sci. Technol. 26, 115003 (2017).

  9. A. Homann, A. Melzer, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, R3835 (1999).

    Google Scholar 

  10. V. E. Fortov, O. F. Petrov, V. I. Molotkov, M. Y. Poustylnik, V. M. Torchinsky, V. N. Naumkin, and A. G. Khrapak, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 036413 (2005).

  11. D. Samsonov, S. K. Zhdanov, R. A. Quinn, S. I. Popel, and G. E. Morfill, Phys. Rev. Lett. 92, 255004 (2004).

  12. N. A. Vorona, A. V. Gavrikov, A. S. Ivanov, O. F. Petrov, V. E. Fortov, and I. A. Shakhova, J. Exp. Theor. Phys. 105, 824 (2007).

    Article  ADS  Google Scholar 

  13. M. M. Vasiliev, O. F. Petrov, A. A. Alekseevskaya, S. I. Ivanov, and E. V. Vasilieva, Molecules 25, 3375 (2020).

    Article  Google Scholar 

  14. L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, J. Exp. Theor. Phys. 100, 1029 (2005).

    Article  ADS  Google Scholar 

  15. E. S. Dzlieva, V. Yu. Karasev, and A. I. Éikhval’d, Opt. Spectrosc. 100, 456 (2006).

    Article  ADS  Google Scholar 

  16. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984).

    Google Scholar 

  17. V. L. Granovskii, Electrical Current in Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  18. V. Yu. Karasev, E. S. Dzlieva, and S. I. Pavlov, Laboratory Dusty Plasma in Magnetic Field (Svoe Izd., St. Petersburg, 2016) [in Russian].

    Google Scholar 

  19. N. Sato, G. Uchida, T. Kaneko, S. Shimizu, and S. Iizuka, Phys. Plasmas 8, 1786 (2001).

    Article  ADS  Google Scholar 

  20. P. K. Kaw, K. Nishikawa, and N. Sato, Phys. Plasmas 9, 387 (2002).

    Article  ADS  Google Scholar 

  21. O. Ishihara, T. Kamimura, K. I. Hirose, and N. Sato, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 046406 (2002).

  22. M. Choudhary, R. Bergert, S. Moritz, S. Mitic, and M. H. Thoma, Contrib. Plasma Phys. 61, e202000110 (2020).

  23. J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009).

  24. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Plasma Sources Sci. Technol. 28, 085020 (2019).

  25. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Plasma Phys. Rep. 49, 10 (2023).

    Article  ADS  Google Scholar 

  26. V. Yu. Karasev, E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, and S. I. Pavlov, Plasma Phys. Rep. 49, 265 (2023).

    Article  ADS  Google Scholar 

  27. V. Yu. Karasev, E. S. Dzlieva, A. Yu. Ivanov, and A. I. Éikhvald, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 066403 (2006).

  28. M. M. Vasil’ev, L. G. D’yachkov, S. N. Antipov, O. F. Petrov, and V. E. Fortov, JETP Lett. 86, 358 (2007).

    Article  ADS  Google Scholar 

  29. M. M. Vasiliev, L. G. D’yachkov, S. N. Antipov, R. Huijink, O. F. Petrov, and V. E. Fortov, Europhys. Lett. 93, 15001 (2011).

    Article  ADS  Google Scholar 

  30. E. S. Dzlieva, L. G. Dyachkov, L. A. Novikov, S. I. Pavlov, and V. Y. Karasev, Europhys. Lett. 123, 15001 (2018).

    Article  ADS  Google Scholar 

  31. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Plasma Sources Sci. Technol. 29, 085020 (2020).

  32. V. Yu. Karasev, E. S. Dzlieva, and S. I. Pavlov, Europhys. Lett. 110, 55002 (2015).

    Article  ADS  Google Scholar 

  33. V. Yu. Karasev, E. S. Dzlieva, S. I. Pavlov, M. A. Ermolenko, L. A. Novikov, and S. A. Maiorov, Contrib. Plasma Phys. 56, 197 (2016).

    Article  ADS  Google Scholar 

  34. V. Yu. Karasev, E. S. Dzlieva, M. A. Ermolenko, A. Yu. Ivanov, and M. S. Golubev, Contrib. Plasma Phys. 51, 509 (2011).

    Article  ADS  Google Scholar 

  35. V. Yu. Karasev, E. S. Dzlieva, and A. I. Éikhval’d, Opt. Spectrosc. 101, 493 (2006).

    Article  ADS  Google Scholar 

  36. Yu. B. Golubovskiĭ, A. A. Kudryavtsev, V. O. Nekuchaev, M. A. Porokhova, and L. D. Tsendin, Electron Kinetics in Nonequilibrium Gas-Discharge Plasma (St.‑Peterb. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  37. A. V. Nedospasov, Sov. Phys.–Usp. 11, 174 (1968).

    Article  ADS  Google Scholar 

  38. P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys.–Usp. 23, 813 (1980).

    Article  ADS  Google Scholar 

  39. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  40. A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, J. Exp. Theor. Phys. 85, 1110 (1997).

    Article  ADS  Google Scholar 

  41. Yu. Golubovskii, V. Karasev, and A. Kartasheva, Plasma Sources Sci. Technol. 27, 065006 (2018).

  42. G. I. Sukhinin and A. V. Fedoseev, Plasma Phys. Rep. 33, 1023 (2007).

    Article  ADS  Google Scholar 

  43. A. V. Zobnin, A. D. Usachev, O. F. Petrov, V. E. Fortov, M. H. Thoma, and M. A. Fink, Phys. Plasmas 25, 033702 (2018).

  44. E. S. Dzlieva, V. Yu. Karasev, and A. I. Éikhval’d, Opt. Spectrosc. 98, 569 (2005).

    Article  ADS  Google Scholar 

  45. E. S. Dzlieva, V. Yu. Karasev, and A. I. Éikhval’d, Opt. Spectrosc. 97, 107 (2004).

    Article  ADS  Google Scholar 

  46. Yu. Karasev, A. I. Éikhval’d, and E. S. Dzlieva, Vestn. S.-Peterb. Univ., Ser. 4: Fiz. Khim., No. 1, 140 (2009).

  47. A. R. Abdirakhmanov, V. Yu. Karasev, E. S. Dzlieva, S. I. Pavlov, L. A. Novikov, M. K. Dosbolaev, S. K. Kodanova, and T. S. Ramazanov, High Temp. 60, S153 (2022).

    Article  Google Scholar 

  48. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Molecules 26, 3788 (2021).

    Article  Google Scholar 

  49. M. Chaudhuri, V. Nosenko, C. Knapek, U. Konopka, A. V. Ivlev, H. M. Thomas, and G. E. Morfill, Appl. Phys. Lett. 100, 264101 (2012).

  50. A. V. Zobnin, A. D. Usachev, and V. E. Fortov, AIP Conf. Proc. 649, 293 (2002).

    Article  ADS  Google Scholar 

  51. S. I. Pavlov, E. S. Dzlieva, L. A. Novikov, and V. Yu. Karasev, in Proceedings of the 10th International Conference on Plasma Physics and Plasma Technology (Minsk, 2022), p. 142.

  52. A. V. Nedospasov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 036401 (2009).

  53. K. Arkar, M. M. Vasiliev, O. F. Petrov, E. A. Kononov, and F. M. Trukhachev, Molecules 26, 561 (2021).

    Article  Google Scholar 

  54. A. S. Svetlov, M. M. Vasiliev, E. A. Kononov, O. F. Petrov, and F. M. Trukhachev, Molecules 28, 1790 (2023).

    Article  Google Scholar 

  55. V. Yu. Karasev, V. A. Polishchuk, A. P. Gorbenko, E. S. Dzlieva, M. A. Ermolenko, and M. M. Makar, Phys. Solid State 58, 1041 (2016).

    Article  ADS  Google Scholar 

  56. L. D. Tsendin, Phys.–Usp. 53, 133 (2010).

    Article  Google Scholar 

  57. Yu. B. Golubovskii, S. U. Nisimov, and E. I. Suleimenov, Tech. Phys. 39, 1005 (1994).

    Google Scholar 

  58. A. B. Stewart, J. Appl. Phys. 27, 911 (1956).

    Article  ADS  Google Scholar 

  59. Yu. B. Golubovskii, A. Yu. Skoblo, C. Wilke, R. V. Kozakov, J. Behnke, and V. O. Nekutchaev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 026414 (2005).

  60. Yu. B. Golubovskii, R. V. Kozakov, V. A. Maiorov, J. Behnke, and J. F. Behnke, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2707 (2000).

    Google Scholar 

  61. Yu. B. Golubovskii, R. V. Kozakov, V. O. Nekuchaev, and A. Yu. Skoblo, J. Phys. D: Appl. Phys. 41, 105205 (2008).

  62. N. Deutcsh and S. Pfau, Beitr. Plasmaphys. 16, 23 (1976).

    Article  ADS  Google Scholar 

  63. E. S. Dzlieva, V. Yu. Karasev, I. Ch. Mashek, and S. I. Pavlov, Tech. Phys. 61, 942 (2016).

    Article  Google Scholar 

Download references

Funding

The experimental part of the work was supported by the Russian Scientific Foundation (project No. 22-72-10004); the theoretical part was carried out according to the state order of the Ministry of Science and Higher Education of the Russian Federation no. 075-01129-23-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Pavlov or E. S. Dzlieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, S.I., Dzlieva, E.S., D’yachkov, L.G. et al. Double Dust Structures in Different Stratum Phases in Moderate Magnetic Fields. Plasma Phys. Rep. 49, 1199–1206 (2023). https://doi.org/10.1134/S1063780X23600950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600950

Keywords:

Navigation