Skip to main content
Log in

A Discharge Slipping over the Surface of Water as a Source of UV Radiation and Hydroxyl Radicals in a Liquid

  • PLASMA RADIATION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A high-voltage repetitively pulsed surface spark discharge propagating along the water–gas interface, when Ar is used as the gaseous medium, is studied. In the experiments, a generator with a storage capacitor energy of up to 1.6 J, a voltage of up to 20 kV, and a pulse duration of 2–3 μs is used. The energy characteristics of the discharge are measured as a function of its length from 40 to 140 mm. The UV radiation intensity is measured by actinometry in the wavelength range from 200 to 380 nm. It is established that the UV radiation yield along the discharge length is constant, almost independent of its length, and is directly proportional to the energy input into the discharge. The energy cost of a radiation photon is 150 eV. Quantitative estimates of the production of hydroxyl radicals depending on the length of the plasma channel and the energy input into the discharge are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutso, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czar-netzki, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012). https://doi.org/10.1088/0022-3727/45/25/253001

  2. P. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009). https://doi.org/10.1088/0022-3727/42/5/053001

  3. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016). https://doi.org/10.1088/0963-0252/25/5/053002

  4. J. E. Foster, B. S. Sommers, S. N. Gucker, I. M. Blankson, and G. Adamovsky, IEEE Trans. Plasma Sci. 40, 1311 (2012). https://doi.org/10.1109/TPS.2011.2180028

    Article  ADS  Google Scholar 

  5. K. Takaki, K. Takahashi, N. Hayashi, D. Wang, and T. Ohshima, Rev. Mod. Plasma Phys. 5, 12 (2021). https://doi.org/10.1007/s41614-021-00059-9

    Article  ADS  Google Scholar 

  6. I. K. Naumova, A. I. Maksimov, and A. V. Khlyustova, Surf. Eng. Appl. Electrochem. 47, 263 (2011). https://doi.org/10.3103/S1068375511030136

    Article  Google Scholar 

  7. E. M. Konchekov, L. V. Kolik, Y. K. Danilejko, S. V. Belov, K. V. Artem’ev, M. E. Astashev, T. I. Pavlik, V. I. Lukanin, A. I. Kutyrev, I. G. Smirnov, and S. V. Gudkov, Plants 11, 1373 (2022). https://doi.org/10.3390/plants11101373

    Article  Google Scholar 

  8. N. N. Skvortsova, V. D. Stepakhin, V. D. Borzosekov, A. A. Sorokin, D. V. Malakhov, V. V. Kachmar, L. V. Kolik, E. M. Konchekov, N. G. Guseinzade, N. S. Akmadullina, E. V. Voronova, and O. N. Shishilov, Plasma Phys. Rep 49, 120 (2023). https://doi.org/10.1134/S1063780X22601833

    Article  ADS  Google Scholar 

  9. T. Pavlik, V. Gudkova, D. Razvolyaeva, M. Pavlova, N. Kostukova, L. Miloykovich, L. Kolik, E. Konchekov, and N. Shimanovskii, Int. J. Mol. Sci. 24, 5100 (2023). https://doi.org/10.3390/ijms24065100

    Article  Google Scholar 

  10. K. V. Artem’ev, N. N. Bogachev, N. G. Guseinzade, T. V. Dolmatov, L. V. Kolik, E. M. Konchekov, and S. E. Andreev, Russ. Phys. J. 62, 2073 (2020). https://doi.org/10.1007/s11182-020-01948-1

    Article  Google Scholar 

  11. M. Kh. Ashurov, E. M. Ashurov, M. E. Astashev, I. V. Baimler, S. V. Gudkov, E. M. Konchekov, V. N. Lednev, N. A. Lukina, T. A. Matveeva, A. G. Markendudis, A. V. Onegov, D. K. Rashidova, R. M. Sarimov, K. F. Sergeichev, S. T. Sharipov, et al., ChemEngineering 6, 91 (2022). https://doi.org/10.3390/chemengineering6060091

    Article  Google Scholar 

  12. A. Kuzin, A. Solovchenko, D. Khort, R. Filippov, V. Lukanin, N. Lukina, M. Astashev, and E. Konchekov, Plants 12, 385 (2023). https://doi.org/10.3390/plants12020385

    Article  Google Scholar 

  13. E. M. Konchekov, A. P. Glinushkin, V. P. Kalinitchenko, K. V. Artem’ev, D. E. Burmistrov, V. A. Kozlov, and L. V. Kolik, Front. Phys. 8, (2021). https://doi.org/10.3389/fphy.2020.616385

  14. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, S. I. Gritsinin, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, Y. A. Lebedev, I. V. Moryakov, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, N. K. Kharchev, et al., Plasma Phys. Rep. 46, 311 (2020). https://doi.org/10.1134/S1063780X20030010

    Article  ADS  Google Scholar 

  15. A. M. Anpilov, E. M. Barkhudarov, V. A. Kop’ev, I. A. Kossyi, and V. P. Silakov, Plasma Phys. Rep. 32, 968 (2006).

    Article  ADS  Google Scholar 

  16. A. M. Anpilov, E. M. Barkhudarov, V. A. Kop’ev, and I. A. Kossyi, in Proceedings of the 28th International Conference on Phenomena in Ionized Gases, Prague, 2007, Paper 157.

  17. A. M. Anpilov, E. M. Barkhudarov, Yu. N. Kozlov, I. A. Kossyi, M. A. Misakyan, I. V. Moryakov, M. G. Smirnov, I. M. Taktakishvili, and S. M. Temchin, J. Phys.: Conf. Ser. 2055, 012012 (2021). https://doi.org/10.1088/1742-6596/2055/1/012012

  18. J. G. Calvert and J. N. Pitts, Jr., Photochemistry (Wiley, New York, 1966).

    Google Scholar 

  19. A. M. Anpilov, E. M. Barkhudarov, Yu. B. Bark, Yu. V. Zadiraka, N. Christofi, Yu. N. Kozlov, V. A. Kop’ev, I. A. Kossyi, V. P. Silakov, M. I. Taktakishvili, and S. M. Temchin, J. Phys. D: Appl. Phys. 34, 993 (2001).

    Article  ADS  Google Scholar 

  20. A. M. Anpilov, E. M. Barkhudarov, A. V. Dvoenko, Yu. N. Kozlov, I. A. Kossyi, I. V. Moryakov, M. I. Taktakishvili, and S. M. Temchin, Usp. Prikl. Fiz. 4, 265 (2016).

    Google Scholar 

  21. C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A 235, 518 (1956). https://doi.org/10.1098/rspa.1956.0102

    Article  ADS  Google Scholar 

  22. A. M. Anpilov, E. M. Barkhudarov, Yu. N. Kozlov, I. A. Kossyi, M. A. Misakyan, I. V. Moryakov, M. I. Taktakishvili, N. M. Tarasova, and S. M. Temchin, Plasma Phys. Rep. 45, 246 (2019). https://doi.org/10.1134/S1063780X19020016

    Article  ADS  Google Scholar 

  23. J. Rabani, W. A. Mulac, and M. S. Matheson, J. Phys. Chem. 69, 53 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Moryakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anpilov, A.M., Barkhudarov, E.M., Kozlov, Y.N. et al. A Discharge Slipping over the Surface of Water as a Source of UV Radiation and Hydroxyl Radicals in a Liquid. Plasma Phys. Rep. 49, 961–966 (2023). https://doi.org/10.1134/S1063780X23600901

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600901

Keywords:

Navigation