Skip to main content
Log in

Simulations of Reflectometer Response to ITER Plasma Perturbations Caused by Alfvén Modes

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The KINX and VENUS codes were used for simulation of the baseline inductive and steady-state scenarios of the ITER tokamak operation. The perturbations of plasma electron density and magnetic field caused by the Alfvén modes were calculated in the flux coordinates for these scenarios. The perturbation fields obtained were converted into the engineering coordinates in order to calculate the propagation of probe electromagnetic radiation of the reflectometer using the two-dimensional full-wave TAMIC RτX code in the expected geometry of the experiment. The calculations performed show that for the baseline inductive scenario, in the case of reflection of the extraordinary wave at the lower cutoff frequency from the high magnetic field side, the electric field relative perturbations of the reflected reflectometer signal correspond to the margin of linear range of the diagnostics operation or even go out of this range. It was found that in a number of scenarios, not only the electron density perturbations, but also the magnetic field perturbations significantly contribute to the total signal perturbations that makes even more difficult the further data interpretation. Another possible problem is the narrow frequency range of probing frequencies where the Alfvén mode can be observed. In addition to simulating the reflection of electromagnetic waves from plasma, it was analyzed also the possibility of measuring the Alfvén modes parameters when the extraordinary wave pass through the plasma in the transparency window between the upper and lower cutoff frequencies of the extraordinary wave (refractometry). It is shown that at the fundamental frequency, the phase perturbations range from 3 to 60 degrees, which makes it impossible to use the amplitude-modulated refractometer for analyzing signals. The “synthetic diagnostics” approach was used, which showed itself well for simulating the operation of reflectometers at plasma facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. A. Fasoli, C. Gormenzano, H. L. Berk, B. Breizman, S. Briguglio, D. S. Darrow, N. Gorelenkov, W. W. Heidbrink, A. Jaun, S. V. Konovalov, R. Nazikian, J.-M. Noterdaeme, S. Sharapov, K. Shinohara, D. Testa, et al., Nucl. Fusion 47, S264 (2007).

    Article  Google Scholar 

  2. V. A. Vershkov, S. V. Soldatov, D. A. Shelukhin, and A. O. Urazbaev, Instrum. Exp. Tech. 47, 182 (2004).

    Article  Google Scholar 

  3. C. Lechte, G. D. Conway, T. Görler, C. Tröster-Schmid, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 59, 075006 (2017).

  4. S. da Graça, G. D. Conway, P. Lauber, D. Curran, V. Igochine, I. Classen, M. Garcia-Muñoz, J. Stober, M. A. Van Zeeland, M. E. Manso, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 54, 095014 (2012).

  5. S. Hacquin, B. Alper, S. Sharapov, D. Borba, C. Boswell, J. Fessey, L. Menesis, M. Walsh, and JET EFDA contributors, Nucl. Fusion 46, S714 (2006).

    Article  Google Scholar 

  6. W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).

  7. N. N. Gorelenkov, M. A. Van Zeeland, H. L. Berk, N. A. Croker, D. Darrow, E. Fredrickson, G.-Y. Fu, W. W. Heidbrink, J. Menard, and R. Nazikyan, Phys. Plasmas 16, 056107 (2009).

  8. D. Borba, G. D. Conway, S. Günter, G. T. A. Huysmans, S. Klose, M. Maraschek, A. Mück, I. Nunes, S. D. Pinches, F. Serra, and the ASDEX-Upgrade Team, Plasma Phys. Controlled Fusion 46, 809 (2004).

    Article  ADS  Google Scholar 

  9. N. A. Crocker, W. A. Peebles, S. Kubota, E. D. Fredrickson, S. M. Kaye, B. P. LeBlanc, and J. E. Menard, Phys. Rev. Lett. 97, 045002 (2006).

  10. A. Könies, S. Briguglio, N. Gorelenkov, T. Fehér, M. Isaev, Ph. Lauber, A. Mishchenko, D. A. Spong, Y. Todo, W. A. Cooper, R. Hatzky, R. Kleiber, M. Borchardt, G. Vlad, A. Biancalani, et al., Nucl. Fusion 58, 126027 (2018).

  11. M. Y. Isaev, V. M. Leonov, and S. Y. Medvedev, Fusion Sci. Technol. 75, 218 (2019).

    Article  ADS  Google Scholar 

  12. A. R. Polevoi, S. Yu. Medvedev, V. S. Mukhovatov, A. S. Kukushkin, Y. Murakami, M. Shimada, and A. A. Ivanov, J. Plasma Fusion Res. Ser. 5, 082 (2002). https://doi.org/10.1088/1741-4326/aba335

  13. M. Yu. Isaev, S. Yu. Medvedev, and W. A. Cooper, Plasma Phys. Rep. 43, 109 (2017).

    Article  ADS  Google Scholar 

  14. R. Betti and J. P. Freidberg, Phys. Fluids B 4, 1465 (1992).

    Article  ADS  Google Scholar 

  15. V. D. Pustovitov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1990), Vol. 15, p. 163.

    Google Scholar 

  16. S. E. Sharapov, B. Alper, J. Fessey, N. C. Hawkes, N. P. Young, R. Nazilian, G. J. Kramer, D. N. Borba, S. Hacquin, E. De La Luna, S. D. Pinches, J. Rapp, D. Testa, and JET-EFDA Contrib., Phys. Rev. Lett. 93, 165001 (2004).

  17. M. Yu. Isaev, P. B. Aleynikov, S. V. Konovalov, and S. Yu. Medvedev, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Paper TH/P3-39. http://www-naweb.iaea.org/napc/physics/FEC/FEC2014/fec2014-preprints/312_THP339.pdf.

  18. M. A. Van Zeeland, N. N. Gorelenkov, W. W. Heidbrink, G. J. Kramer, D. A. Spong, M. E. Austin, R. K. Fisher, M. Garcia Muñoz, M. Gorelenkova, N. Luhmann, M. Murakami, R. Nazikian, D. C. Pace, J. M. Park, B. J. Tobias, et al., Nucl. Fusion 52, 094023 (2012).

  19. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Book  Google Scholar 

  20. V. Vershkov, M. Manso, G. Vayakis, A. J. Sanchez, D. Wagner, C. Walker, S. Soldatov, L. Kuznetsova, V. Zhuravlev, B. Sestroretskii, ITER Joint Central Team, and Russian and EU Home Teams, in Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Ed. by P. E. Stott, G. Gorini, P. Prandoni, and E. Sindoni (Plenum, New York, 1998), p. 107.

    Google Scholar 

  21. A. V. Krasilnikov, Y. A. Kaschuck, V. A. Vershkov, A. A. Petrov, V. G. Petrov, and S. N. Tugarinov, AIP Conf. Proc. 1612, 133 (2014).

    Article  ADS  Google Scholar 

  22. B. Delaunay, Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, No. 6, 793 (1934);

  23. MathWorks, Griddata. https://www.mathworks.com/help/matlab/ref/griddata.html. Cited November 20, 2022.

  24. M. Schneller, Ph. Lauber, and S. Briguglio, Plasma Phys. Controlled Fusion 58, 014019 (2016).

  25. K. Klimov, A. Godin, and V. Perfil’ev, Schemes of Space Elementary Volume in Magnetized Plasma (LAMBERT Academic Publ., Moscow, 2012) [in Russian].

    Google Scholar 

  26. E. Mazzucato and R. Nazikian, Rev. Sci. Intrum. 66, 1237 (1995).

    Article  ADS  Google Scholar 

  27. ITER Project Requirements, ITER Organization, 2021, pp. 1–159.

  28. S. V. Soldatov, A. A. Bagdasarov, V. V. Chistiakov, Yu. N. Dnestrovskii, N. V. Ivanov, A. M. Kakurin, D. A. Martynov, V. V. Piterskii, V. I. Pozniak, V. A. Vershkov, S. V. Tsaun, A. N. Yakovets, and V. V. Volkov, in Proceedings of the 24th EPS Conference on Controlled Fusion and Plasma Physics, Berchtesgarden, 1997, ECA 21A, Part II, 673 (1997). http://libero.ipp.mpg.de/libero/PDF/EPS_24_Vol2_1997.pdf.

  29. Teledyne SP Devices, ADQ14 Datasheet, 2020. https://www.spdevices.com/documents/datasheets/19-adq14-datasheet/file. Cited November 20, 2022.

Download references

ACKNOWLEDGMENTS

We are grateful to Profs. S. Hirshman and W. A. Cooper for the possibility of using VMEC and TERPSICHORE codes.

Funding

This work was performed under Contract no. 17706413348210001850/47-21/01 dated July 1, 2021, between the Private Institution “ITER-Center” and the National Research Center “Kurchatov Institute” within the framework of the State Contract no. n.4a.241.19.20.1042 dated April 21, 2020, with the State Corporation “Rosatom”. The work was performed using the equipment of the Multiple-Access Center “Complex for Modeling and Processing Data of Mega-Class Research Facilities” of the National Research Center “Kurchatov Institute,” http://ckp.nrcki.ru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shelukhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelukhin, D.A., Isaev, M.Y., Medvedev, S.Y. et al. Simulations of Reflectometer Response to ITER Plasma Perturbations Caused by Alfvén Modes. Plasma Phys. Rep. 49, 1087–1103 (2023). https://doi.org/10.1134/S1063780X23600895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600895

Keywords:

Navigation