Skip to main content
Log in

Plasma Distribution in a Column of a Low-Pressure Microwave Discharge Sustained by a Standing Surface Wave

  • OSCILLATIONS AND WAVES IN PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The structure of a low-pressure microwave discharge sustained by a standing surface electromagnetic wave (SEW) in a quartz tube filled with argon was studied. The standing wave was formed using a set of two flat metal mirrors, which formed an open SEW resonator. The plasma density profile and structure of the electromagnetic field of the SEW were studied in the pressure range from 0.25 to 10 Torr. The excitation of the standing wave allowed us to independently study the longitudinal Ez and transverse Er components of the SEW electric field vector. It was confirmed experimentally that the oscillation phases of the components of the SEW are shifted by π. The excitation of the standing wave in the plasma column leads to the formation of local minimums and maximums of plasma density, whose period equals half the wavelength of the surface wave. At the same time, the spatial period of density modulation is close to the distribution of the Ez component of the standing SEW. It was shown that the formation time of the modulated structure of plasma density is close to the characteristic time of diffusion, while the degree of modulation increases with increasing pressure. It was shown experimentally that it is possible to produce a plasma column with plasma density modulation nemax/nemin ≈ 5 and a length of about 10 wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. H. Schlüter and A. Shivarova, Phys. Rep. 443, 121 (2007). https://doi.org/10.1016/j.physrep.2006.12.006

    Article  ADS  Google Scholar 

  2. A. Sommerfeld, Ann. Phys. Chem. 67, 233 (1899).

    Article  ADS  Google Scholar 

  3. C. F. M. Borges, V. T. Airoldi, E. J. Corat, M. Moisan, S. Schelz, and D. Guay, J. Appl. Phys. 80, 6013 (1996). https://doi.org/10.1063/1.363600

    Article  ADS  Google Scholar 

  4. M. Moisan, K. Boudam, D. Carignan, D. Kéroack, P. Levif, J. Barbeau, J. Séguin, K. Kutasi, B. Elmoualij, O. Thellin, and W. Zorzi, Eur. Phys. J.: Appl. Phys. 63, 10001 (2013). https://doi.org/10.1051/epjap/2013120510

    Article  ADS  Google Scholar 

  5. E. N. Istomin, D. M. Karfidov, I. M. Minaev, A. A. Rukhadze, V. P. Tarakanov, K. F. Sergeichev, and A. Yu. Trefilov, Plasma Phys. Rep. 32, 388 (2006). https://doi.org/10.1134/S1063780X06050047

    Article  ADS  Google Scholar 

  6. J. Zhao, Z. Sun, Y. Ren, L. Song, S. Wang, W. Liu, Z. Yu, and Y. Wei, J. Phys. D: Appl. Phys. 52, 295202 (2019). https://doi.org/10.1088/1361-6463/ab1b0a

  7. M. Moisan and Z. Zakrzewski, J. Phys. D: Appl. Phys. 24, 1025 (1991). https://doi.org/10.1088/0022-3727/24/7/001

    Article  ADS  Google Scholar 

  8. M. Moisan, A. Shivarova, and A. W. Trivelpiece, Plasma Phys. 24, 1331 (1982). https://doi.org/10.1088/0032-1028/24/11/001

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Margot-Chaker, M. Moisan, M. Chaker, V. M. M. Glaude, P. Lauque, J. Paraszczak, and G. Sauvé, J. Appl. Phys. 66, 4134 (1982). https://doi.org/10.1063/1.343998

    Article  ADS  Google Scholar 

  10. I. Zhelyazkov, E. Benova, and V. Atanassov, J. Appl. Phys. 59, 1466 (1986). https://doi.org/10.1063/1.336501

    Article  ADS  Google Scholar 

  11. A. W. Trivelpiece, PhD Thesis (California Institute of Technology, Pasadena, 1958).

  12. J. Rogers and J. Asmussen, IEEE Trans. Plasma Sci. 10, 11 (1982). https://doi.org/10.1109/TPS.1982.4316127

  13. J. Wolinska-Szatkowska, J. Phys. D: Appl. Phys. 21, 937 (1988). https://doi.org/10.1088/0022-3727/21/6/012

    Article  ADS  Google Scholar 

  14. Z. Rakem, P. Leprince, and J. Marec, Rev. Phys. Appl. 25, 125 (1990). https://doi.org/10.1051/rphysap:01990002501012500

    Article  Google Scholar 

  15. V. I. Zhukov and D. M. Karfidov, Plasma Phys. Rep. 49, 219 (2023). https://doi.org/10.1134/S1063780X22601651

    Article  ADS  Google Scholar 

  16. G. S. Solntsev, P. S. Bulkin, M. V. Mokeev, and L. I. Tsvetkova, Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 6, 36 (1997).

  17. M. Moisan, C. Beaudry, and P. Leprince, Phys. Lett. A 50, 125 (1974). https://doi.org/10.1016/0375-9601(74)90903-7

    Article  ADS  Google Scholar 

  18. V. I. Zhukov, D. M. Karfidov, and K. F. Sergeichev, Plasma Phys. Rep. 46, 837 (2020). https://doi.org/10.1134/S1063780X20080127

    Article  ADS  Google Scholar 

  19. M. Moisan, P. Levif, and H. Nowakowska, in Proceedings of the 10th International Workshop “Microwave Discharges: Fundamentals and Applications,” Zvenigorod, 2018, p. 97. https://is.muni.cz/publication/1499336/Konf-2018.pdf.

  20. J. Cotrino, A. Gamero, A. Sola, M. Sáez, V. Colomer, A. Sanz-Medel, and J. E. Sánchez Uria, Microchim. Acta 99, 179 (1989). https://doi.org/10.1007/BF01244672

    Article  Google Scholar 

  21. M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, Rev. Phys. Appl. 17, 707 (1982). https://doi.org/10.1051/rphysap:019820017011070700

    Article  Google Scholar 

  22. J. Cotrino, A. Gamero, A. Sola, and V. Colomer, J. Phys. D: Appl. Phys. 21, 1377 (1988). https://doi.org/10.1088/0022-3727/21/9/010

    Article  ADS  Google Scholar 

  23. A. N. Kondratenko, Surface and Bulk Waves in Bounded Plasmas (Energoatomizdat, Moscow, 1985), p. 17 [in Russian].

    Google Scholar 

  24. H. Nowakowska, M. Lackowski, and M. Moisan, IEEE Trans. Plasma Sci. 48, 2106 (2020). https://doi.org/10.1109/TPS.2020.2995475

    Article  ADS  Google Scholar 

  25. M. Moisan and H. Nowakowska, Plasma Sources Sci. Technol. 27, 073001 (2018). https://doi.org/10.1088/1361-6595/aac528

  26. M. Moisan, I. P. Ganachev, and H. Nowakowska, Phys. Rev. E 106, 045202 (2022). https://doi.org/10.1103/PhysRevE.106.045202

  27. C. M. Ferreira and M. Moisan, Phys. Scr. 38, 382 (1988). https://doi.org/10.1088/0031-8949/38/3/008

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Center for Scientific Information, project no. 20-5804019 Bel_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.I., Karfidov, D.M. Plasma Distribution in a Column of a Low-Pressure Microwave Discharge Sustained by a Standing Surface Wave. Plasma Phys. Rep. 49, 975–983 (2023). https://doi.org/10.1134/S1063780X23600792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600792

Keywords:

Navigation