Skip to main content
Log in

On the Issue of Possibility of Reducing Anomalous Absorption of Extraordinary Pump Wave in a Wide Range of Plasma Densities

  • PLASMA–WAVE INTERACTION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The consequences are studied of the localization effect of ion Bernstein (IB) waves excited in secondary decay processes accompanying the development of low-threshold parametric decay instability of the extraordinary pump wave, which results in the excitation of the extraordinary wave and the upper-hybrid (UH) wave localized in the plasma. It is shown that in experiments on electron cyclotron resonance plasma heating at the second resonance harmonic, the effect discovered results in a decrease in both the saturation level of primary instability and anomalous absorption level of the pump wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. A. V. Timofeev, Sov. Phys.–Usp. 16, 445 (1974).

    Article  ADS  Google Scholar 

  2. A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  3. A. V. Timofeev, Phys.–Usp. 47, 555 (2004).

  4. E. Westerhof, S. K. Nielsen, J. W. Oosterbeek, M. Salewski, M. R. de Baar, W. A. Bongers, A. Bürger, B. A. Hennen, S. B. Korsholm, F. Leipold, D. Moseev, M. Stejner, and D. J. Thoen (the TEXTOR Team), Phys. Rev. Lett. 103, 125001 (2009).

  5. S. K. Nielsen, M. Salewski, E. Westerhof, W. Bongers, S. B. Korsholm, F. Leipold, J. W. Oosterbeek, D. Moseev, M. Stejner, and the TEXTOR Team, Plasma Phys. Controlled Fusion 55, 115003 (2013).

  6. G. M. Batanov, V. D. Borzosekov, L. M. Kovrizhnykh, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarkisyan, N. N. Skvortsova, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 39, 444 (2013).

    Article  ADS  Google Scholar 

  7. A. Tancetti, S. K. Nielsen, J. Rasmussen, E. Z. Gusakov, A. Yu. Popov, D. Moseev, T. Stange, M. G. Senstius, C. Killer, M. Vecséi, T. Jensen, M. Zanini, I. Abramovic, M. Stejner, G. Anda, et al., Nucl. Fusion 62, 074003 (2022).

  8. S. K. Hansen, S. K. Nielsen, J. Stober, J. Rasmussen, M. Stejner, M. Hoelzl, T. Jensen, and the ASDEX Upgrade Team, Nucl. Fusion 60, 106008 (2020).

  9. B. Zurro, A. Baciero, V. Tribaldos, M. Liniers, A. Cappa, A. López-Fraguas, D. Jiménez-Rey, J. M. Fontdecaba, O. Nekhaieva, and the TJ-II Team, Nucl. Fusion 53, 083017 (2013).

  10. M. Martínez, B. Zurro, A. Baciero, D. Jiménez-Rey, and V. Tribaldos, Plasma Phys. Controlled Fusion 60, 025024 (2018).

  11. Yu. N. Dnestrovskij, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, A. R. Nemets, M. R. Nurgaliev, G. F. Subbotin, N. A. Solovev, D. Yu. Sychugov, and S. V. Cherkasov, Plasma Phys. Controlled Fusion 63, 055012 (2021).

  12. A. I. Meshcheryakov, I. Yu. Vafin, and I. A. Grishina, Plasma Phys. Rep. 46, 1144 (2020).

    Article  ADS  Google Scholar 

  13. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 91, 655 (2010).

    Article  ADS  Google Scholar 

  14. E. Z. Gusakov and A. Yu. Popov, Phys. Rev. Lett. 105, 115003 (2010).

  15. E. Gusakov and A. Popov, Europhys. Lett. 99, 15001 (2012).

    Article  ADS  Google Scholar 

  16. A. Yu. Popov and E. Z. Gusakov, J. Exp. Theor. Phys. 120, 147 (2015).

    Article  ADS  Google Scholar 

  17. A. Yu. Popov and E. Z. Gusakov, Plasma Phys. Controlled Fusion 57, 025022 (2015).

  18. A. Yu. Popov and E. Z. Gusakov, J. Exp. Theor. Phys. 121, 362 (2015).

    Article  ADS  Google Scholar 

  19. A. Yu. Popov and E. Z. Gusakov, Europhys. Lett. 116, 45002 (2016).

    Article  ADS  Google Scholar 

  20. A. Yu. Popov and E. Z. Gusakov, JETP Lett. 105, 78 (2017).

    Article  ADS  Google Scholar 

  21. E. Z. Gusakov and A. Yu. Popov, Phys.–Usp. 63, 365 (2020).

    Article  Google Scholar 

  22. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 59, 025005 (2017).

  23. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 60, 025001 (2018).

  24. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 25, 012101 (2018).

  25. E. Z. Gusakov, A. Yu. Popov, and A. N. Saveliev, Phys. Plasmas 25, 062106 (2018).

  26. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 25, 082117 (2018).

  27. E. Z. Gusakov, A. Yu. Popov, and P. V. Tretinnikov, Nucl. Fusion 59, 106040 (2019).

  28. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 59, 104003 (2019).

  29. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 62, 025028 (2020).

  30. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 60, 076018 (2020).

  31. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 63, 015016 (2021).

  32. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016).

  33. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 63, 125017 (2021).

  34. D. G. Swanson, Plasma Waves (IOP, Bristol, 2003).

    Google Scholar 

  35. A. D. Piliya and A. N. Saveliev, Plasma Phys. Controlled Fusion 36, 2059 (1994).

    Article  ADS  Google Scholar 

  36. S. S. Abdullaev, K. H. Finken, M. W. Jakubowski, S. V. Kasilov, M. Kobayashi, D. Reiser, D. Reiter, A. M. Runov, and R. Wolf, Nucl. Fusion 43, 299 (2003).

    Article  ADS  Google Scholar 

  37. M. Yu. Kantor, A. J. H. Donné, R. Jaspers, H. J. van der Meiden, and TEXTOR Team, Plasma Phys. Controlled Fusion 51, 055002 (2009).

  38. E. Z. Gusakov, A. Yu. Popov, and P. V. Tretinnikov, Plasma Phys. Controlled Fusion 61, 085008 (2019).

  39. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Rep. 48, 327 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

Analytical studies were supported by the Russian Science Foundation (project no. 22-12-00010); numerical simulations were supported by the Ioffe Institute under the State Contract no. 0040-2019-0023, and the development of the computer code for simulating the PDI saturation was supported by the Ioffe Institute under the State Contract no. 0034-2021-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

In memory of A.V. Timofeev

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakov, E.Z., Popov, A.Y. On the Issue of Possibility of Reducing Anomalous Absorption of Extraordinary Pump Wave in a Wide Range of Plasma Densities. Plasma Phys. Rep. 49, 936–948 (2023). https://doi.org/10.1134/S1063780X23600767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600767

Keywords:

Navigation