Skip to main content
Log in

On the Possibility of Achieving Thermonuclear Ignition During Magnetic Compression of High-Temperature Magnetized Plasma by the Current of a Disk Explosive Magnetic Generator

  • MAGNETIC TRAPS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

One of the directions for achieving thermonuclear ignition is compression of a heated, magnetized plasma by a liner. This concept was developed in the USA at the Z Machine (MagLIF project). To achieve ignition, it is necessary to create a current pulse with an amplitude of 60 MA or higher. The Z Machine produces currents with amplitudes up to 25 MA. The development of more powerful installations is a problem for the future. At the same time, today already, the explosive magnetic generators create the required currents with long current rise times. In this work, based on calculation results of the compression of a hot magnetized plasma, the possibilities of achieving ignition using modern disc explosive magnetic generators are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Yu. B. Khariton, V. N. Mokhov, V. K. Chernyshev, and V. B. Yakubov, Sov. Phys.–Usp. 19, 1032 (1976).

    Article  Google Scholar 

  2. V. N. Mokhov, V. K. Chernyshev, V. B. Yakubov, M. S. Protasov, V. M. Danov, and E. I. Zharinov, Sov. Phys. Dokl. 24, 557 (1979).

    ADS  Google Scholar 

  3. A. M. Buyko, G. I. Volkov, S. F. Garanin, V. A. Demidov, Yu. N. Dolin, V. V. Zmushko, V. A. Ivanov, V. P. Korchagin, M. V. Lartsev, V. I. Mamyshev, A. P. Mochalov, V. N. Mokhov, I. V. Morozov, N. N. Moskvichev, S. V. Pak, et al., Phys. Dokl. 40, 459 (1995).

    ADS  Google Scholar 

  4. I. Lindemuth, R. E. Reinovsky, R. E. Christian, C. F. Ekdahl, J. H. Goforth, R. C. Haight, G. Idzorek, N. S. King, R. C. Kirpatrick, R. E. Larson, G. L. Morgan, B. W. Olinger, H. Oona, P. T. Sheehey, J. S. Shlaster, et al., Phys. Rev. Lett. 75, 1953 (1995). https://doi.org/10.1103/PhysRevLett.75.1953

    Article  ADS  Google Scholar 

  5. S. F. Garanin, IEEE Trans. Plasma Sci. 26, 1230 (1998). https://doi.org/10.1109/27.7225155

    Article  ADS  Google Scholar 

  6. S. F. Garanin, V. I. Mamyshev, and E. M. Palagina, IEEE Trans. Plasma Sci. 34, 2268 (2006). https://doi.org/10.1109/TPS.2006.878370

    Article  ADS  Google Scholar 

  7. S. F. Garanin, V. I. Mamyshev, and V. B. Yakubov, IEEE Trans. Plasma Sci. 34, 2273 (2006). https://doi.org/10.1109/TPS.2006.878368

    Article  ADS  Google Scholar 

  8. S. F. Garanin, Physical Processes in MAGO-MTF Systems (RFYaTs-VNIIEF, Sarov, 2012) [in Russian].

  9. V. K. Chernychev, V. P. Korchagin, L. P. Babich, O. M. Burenkov, Yu. N. Dolin, P. V. Duday, V. I. Dudin, V. A. Ivanov, A. V. Ivanovsky, G. V. Karpov, A. I. Kraev, V. B. Kudel’kin, I. M. Kutsyk, V. I. Mamyshev, I. V. Morozov, et al., IEEE Trans. Plasma Sci. 44, 250 (2016). https://doi.org/10.1109/TPS.2016.2524211

    Article  ADS  Google Scholar 

  10. V. K. Chernyshev, V. P. Korchagin, L. P. Babich, O. M. Burenkov, G. I. Volkov, Yu. N. Dolin, V. I. Dudin, V. A. Ivanov, A. V. Ivanovskii, G. V. Karpov, A. I. Kraev, V. B. Kudel’kin, I. V. Morozov, S. V. Pak, S. M. Polyushko, et al., Plasma Phys. Rep. 44, 180 (2018). https://doi.org/10.1134/S1063780X18020022

    Article  ADS  Google Scholar 

  11. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and V. E. Cuneo, Phys. Plasmas 17, 056303 (2010). https://doi.org/10.1063/1.3333505

  12. S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012). https://doi.org/10.1103/PhysRevLett.108.025003

  13. M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, et al., Phys. Rev. Lett. 113, 155003 (2014). https://doi.org/10.1103/PhysREVLett.113.155003

  14. M. R. Gomez, S. A. Slutz, P. F. Knapp, R. D. Hank, M. R. Weis, E. C. Harding, M. Geissel, J. R. Fein, V. E. Glinsky, S. B. Hansen, A. J. Harvey-Thompson, C. A. Jennings, I. C. Smith, D. Woodbury, D. J. Ampleford, et al., IEEE Trans. Plasma Sci. 47, 2081 (2019). https://doi.org/10.1109/TPS.2019.2893517

    Article  ADS  Google Scholar 

  15. P. F. Knapp, M. R. Gomez, S. B. Hansen, M. E. Glinsky, C. A. Jennings, S. A. Slutz, E. C. Harding, K. D. Hahn, M. R. Weis, M. Evans, M. R. Martin, A. J. Harvey-Thompson, M. Geissel, I. C. Smith, D. E. Ruiz, et al., Phys. Plasmas 26, 012704 (2019). https://doi.org/10.1063/1.5064548

  16. M. R. Gomez, S. A. Slutz, A. B. Sefkow, K. D. Hahn, S. B. Hansen, P. F. Knapp, P. F. Schmit, C. L. Ruiz, D. B. Sinars, E. C. Harding, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, I. C. Smith, et al., Phys. Plasmas 22, 056306 (2015). https://doi.org/10.1063/1.4919394

  17. S. G. Garanin, A. V. Ivanovskii, S. M. Kulikov, V. I. Mamyshev, S. N. Pevnyi, and V. G. Rogachev, Plasma Phys, Rep. 48, 111 (2022). https://doi.org/10.1134/S1063780X22020076

    Article  ADS  Google Scholar 

  18. Yu. P. Raizer, Fundamentals of Modern Physics of Gas-Discharge Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  19. F. S. Felber, M. M. Malley, F. J. Wessel, M. K. Matzen, M. A. Palmer, R. B. Spielman, M. A. Liberman, and A. L. Velikovich, Phys. Fluids 31, 2053 (1988). https://doi.org/10.1063/1.866657

    Article  ADS  Google Scholar 

  20. S. M. Golberg, M. A. Liberman, and A. L. Velikovich, Plasma Phys. Controlled Fusion 32, 319 (1990). https://doi.org/10.1088/0741-3335/32/5/002

    Article  ADS  Google Scholar 

  21. R. D. McBride, S. A. Slutz, R. A. Vesey, M. R. Gomez, A. B. Sefkow, S. B. Hansen, P. F. Knapp, P. F. Schmit, M. Geissel, A. J. Harvey-Thompson, C. A. Jennings, E. C. Harding, T. J. Awe, D. C. Rovang, K. D. Hahn, et al., Phys. Plasmas 23, 012705 (2016). https://doi.org/10.1063/1.4939479

  22. V. F. Ermolovich, A. V. Ivanovskii, and A. P. Orlov, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 3 (1999).

  23. Yu. S. Vakhrameev, V. N. Mokhov, and N. A. Popov, Sov. At. Energy 49, 567 (1980).

    Article  Google Scholar 

  24. V. F. Ermolovich, A. V. Ivanovskii, A. P. Orlov, and V. D. Selemir, Tech. Phys. 45, 1241 (2000).

    Article  Google Scholar 

  25. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  26. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 1963; Academic, New York, 1966, 1967), Vols. 1, 2.

  27. B. N. Kozlov, Sov. J. At. Energy 12, 247 (1962). https://doi.org/10.1007/BF01480205

    Article  Google Scholar 

  28. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas-Dynamics Problems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  29. Yu. D. Bakulin, V. F. Kuropatenko, and A. V. Luchinskii, Sov. Phys.–Tech. Phys. 21, 1144 (1976).

    Google Scholar 

  30. H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam, 1970).

    Google Scholar 

  31. S. G. Garanin and V. I. Mamyshev, Prikl. Mekh. Tekh. Fiz., No. 1, 30 (1990).

  32. A. M. Buyko, S. F. Garanin, V. A. Demidov, V. N. Kostjukov, A. I. Kuzjaev, A. A. Kulagin, V. I. Mamyshev, V. N. Mokhov, A. A. Petrukhin, P. N. Piskarev, M. S. Protasov, V. K. Chernyshev, V. A. Shevtsov, and V. B. Yakubov, in Megagauss Fields and Pulsed Power Systems: Proceedings of the 5th International Conference on Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, July 14–17, 1989, Ed. by V. M. Titov and G. A. Shvetsov (Nova Science, New York, 1990), p. 743.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovskii, A.V., Mamyshev, V.I. On the Possibility of Achieving Thermonuclear Ignition During Magnetic Compression of High-Temperature Magnetized Plasma by the Current of a Disk Explosive Magnetic Generator. Plasma Phys. Rep. 49, 859–867 (2023). https://doi.org/10.1134/S1063780X23600639

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600639

Keywords:

Navigation