Skip to main content
Log in

Physical Properties of a Low-Power Helicon Source Operating on a High-Frequency Discharge with a Capacitive Component

  • ION AND PLASMA SOURCES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of an experimental study of a low-power RF plasma source placed in a longitudinal magnetic field (helicon thruster), when it operates on a capacitive RF discharge and inductive RF discharges with a capacitive component, are presented. A significant dependence of the characteristics of the ion and electron fluxes of the source on the induction of a constant magnetic field is shown. The fundamental applicability of capacitive RF discharge as a working process in the studied plasma source is demonstrated. It is shown that the increase in the average energy of ions in the flow at the outlet of the source with the appearance of the capacitive component of the discharge is slight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. M. Manente, M. Walker, J. Carlsson, C. Bramanti, S. Rocca, D. Curreli, Y. Guclu, and D. Pavarin, in Proceedings of the 5th International Spacecraft Propulsion Conference, Crete, 2008. https://www.esa.int/gsp/ACT/doc/PRO/ACT-RPR-PRO-2008-ISPC-Feasibility-study-low-power-helicon-thruster.pdf.

  2. R. W. Boswell and F. F. Chen, IEEE Trans. Plasma Sci. 25, 1229 (1997). https://doi.org/10.1109/27.650898

    Article  ADS  Google Scholar 

  3. F. F. Chen and R. W. Boswell, IEEE Trans. Plasma Sci. 25, 1245 (1997). https://doi.org/10.1109/27.650899

    Article  ADS  Google Scholar 

  4. C. Charles, J. Phys. D: Appl. Phys. 42, 163001 (2009). https://doi.org/10.1088/0022-3727/42/16/163001

  5. C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007). https://doi.org/10.1088/0963-0252/16/4/R01

    Article  ADS  Google Scholar 

  6. K. Takahashi, Sci. Rep. 11, 2768 (2021). https://doi.org/10.1038/s41598-021-82471-2

    Article  ADS  Google Scholar 

  7. K. Takahashi, Rev. Mod. Plasma Phys. 3, 3 (2019). https://doi.org/10.1007/s41614-019-0024-2

    Article  ADS  Google Scholar 

  8. C. Charles, R. W. Boswell, and M. A. Lieberman, Appl. Phys. Lett. 89, 261503 (2006). https://doi.org/10.1063/1.2426881

  9. C. Charles, W. Cox, R. W. Boswell, R. Laine, and M. Perren, Plasma Sources Sci. Technol. 19, 045003 (2010).

  10. C. S. Corr, J. Zanger, R. W. Boswell, and C. Charles, Appl. Phys. Lett. 91, 241501 (2007). https://doi.org/10.1063/1.2823575

  11. T. Harle, S. J. Pottinger, and V. J. Lappas, Plasma Sources Sci. Technol. 22, 015015 (2013). https://doi.org/10.1088/0963-0252/22/1/015015

  12. C. Charles and R. W. Boswell, Phys. Plasmas 11, 1706 (2004). https://doi.org/10.1063/1.1652058

    Article  ADS  Google Scholar 

  13. C. S. Corr, R. W. Boswell, C. Charles, and J. Zanger, Appl. Phys. Lett. 92, 221508 (2008). https://doi.org/10.1063/1.2938720

  14. C. Charles and R. W. Boswell, Appl. Phys. Lett. 82, 1356 (2003). https://doi.org/10.1063/1.1557319

    Article  ADS  Google Scholar 

  15. C. Charles and R. W. Boswell, Appl. Phys. Lett. 91, 201505 (2007). https://doi.org/10.1063/1.2814877

  16. K. Takahashi, C. Charles, R. Boswell, and A. Ando, Plasma Sources Sci. Technol. 23, 044004 (2014). https://doi.org/10.1088/0963-0252/23/4/044004

  17. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharge (Moscow, Nauka, 1995; CRC, London, 1995).

  18. I. I. Zadiriev, K. V. Vavilin, E. A. Kral’kina, A. M. Ni-konov, and G. V. Shvydky, Plasma Phys. Rep. 48, 961 (2022). https://doi.org/10.1134/S1063780X22600608

    Article  ADS  Google Scholar 

  19. E. A. Kralkina, A. A. Rukhadze, P. A. Nekliudova, V. B. Pavlov, A. K. Petrov, and K. V. Vavilin, AIP Adv. 8, 035217 (2018). https://doi.org/10.1063/1.5023631

  20. K. P. Shamrai and V. B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996). https://doi.org/10.1088/0963-0252/5/3/015

    Article  ADS  Google Scholar 

  21. F. F. Chen, Phys. Plasmas 3, 1783 (1996). https://doi.org/10.1063/1.871697

    Article  ADS  Google Scholar 

  22. D. D. Blackwell, T. G. Madziwa, D. Arnush, and F. F. Chen, Phys. Rev. Lett. 88, 145002 (2002). https://doi.org/10.1103/PhysRevLett.88.145002

  23. F. F. Chen, X. Jiang, J. D. Evans, G. Tynan, and D. Arnush, Plasma. Phys. Controlled Fusion 39, A411 (1997). https://doi.org/10.1088/0741-3335/39/5A/038

    Article  ADS  Google Scholar 

  24. D. Arnush, Phys. Plasmas 7, 3042 (2000). https://doi.org/10.1063/1.874157

    Article  ADS  Google Scholar 

  25. F. F. Chen, Phys. Plasmas 10, 2586 (2003). https://doi.org/10.1063/1.1575755

    Article  ADS  Google Scholar 

  26. F. F. Chen, in High-Density Plasma Sources: Design, Physics, and Performance, Ed. by O. A. Popov (Noyes, Park Ridge, NJ, 1996), p. 1.

    Google Scholar 

  27. F. F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015). https://doi.org/10.1088/0963-0252/24/1/014001

  28. S. Shinohara, Adv. Phys.: X 3, 1420424 (2018). https://doi.org/10.1080/23746149.2017.1420424

  29. S. Isayama, S. Shinohara, and T. Hada, Plasma Fusion Res. 13, 1101014 (2018). https://doi.org/10.1585/pfr.13.1101014

  30. R. W. Boswell, Phys. Lett. A 33, 457 (1970). https://doi.org/10.1016/0375-9601(70)90606-7

    Article  ADS  Google Scholar 

  31. F. F. Chen and Gs. Chevalier, J. Vac. Sci. Technol., A 10, 1389 (1992). https://doi.org/10.1116/1.578256

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 21-72-10090, https://rscf.ru/project/21-72-10090/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Zadiriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadiriev, I.I., Vavilin, K.V., Kral’kina, E.A. et al. Physical Properties of a Low-Power Helicon Source Operating on a High-Frequency Discharge with a Capacitive Component. Plasma Phys. Rep. 49, 890–900 (2023). https://doi.org/10.1134/S1063780X23600536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600536

Keywords:

Navigation