Skip to main content
Log in

Cylindrical Three Dimensional Dust–Ion–Acoustic Solitary Waves in Nonthermal Plasmas

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Cylindrical three dimensional dust–ion–acoustic (DIA) solitary waves (SWs) in a complex plasma medium consisting of nonthermal electrons, adiabatically warm ions, and immobile positively charged dust (PCD) species are studied. The reductive perturbation method, which is valid for small but finite amplitude waves, is used to derive the (3 + 1)-dimensional cylindrical Kadomstev–Petviashvili (cKP) equation (also known as cylindrical Korteweg–de Vries equation). The parametric regimes for the existence of solitary structures are shown. The plasma model under consideration supports both the positive and negative DIA SWs. Moreover, the effects of the physical plasma parameters (the ratio of the dust to ion number density, the nonthermal parameter, etc.) on the basic features (amplitude, width, and speed, etc.) of DIA SWs are discussed. Depending on the plasma parameters (the PCD and ion number density ratio, nonthermality of electron, and temperature ratio of ion and electron) the solitary pulses change their polarity. The present investigation may be helpful to the understanding of the properties of the DIA SWs in different astrophysical plasma environments as well as in laboratory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. M. Horányi and D. A. Mendis, Astrophys. J. 294, 357 (1985).

    Article  ADS  Google Scholar 

  2. M. Horányi and D. A. Mendis, Astrophys. J. 307, 800 (1985).

    Article  ADS  Google Scholar 

  3. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  4. T. Northrop, Phys. Scr. 45, 475 (1992).

    Article  ADS  Google Scholar 

  5. D. A. Mendis and M. Rosenberg, IEEE Trans. Plasma Sci. 20, 929 (1992).

    Article  ADS  Google Scholar 

  6. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  7. F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  8. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (CRC, Boca Raton, 2001).

    Google Scholar 

  9. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  10. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  11. A. Homann, A. Melzer, S. Peters, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 56, 7138 (1997).

    Google Scholar 

  12. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  13. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1994).

    Article  ADS  Google Scholar 

  14. Q.-Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 6, 3455 (1999).

    Article  ADS  Google Scholar 

  15. J. B. Lister, R. Khayrutdinov, D. J. N. Limebeer, V. Lukash, Y. Nakamura, A. Sharma, F. Villone, J. P. Wainwright, and R. Yoshino, Fusion Eng. Des. 56–57, 755 (2001).

    Article  Google Scholar 

  16. M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996).

    Article  ADS  Google Scholar 

  17. D. A. Mendis and M. Horányi, Rev. Geophys. 51, 53 (2013).

    Article  ADS  Google Scholar 

  18. O. Havnes, J. Trøim, T. Blix, W Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen, J. Geophys. Res.: Space Phys. 101, 10839 (1996).

    Article  ADS  Google Scholar 

  19. E. C. Grün, H. A. Zook, M. Baguhl, A. Balogh, S. J. Bame, H. Fechtig, R. Forsyth, M. S. Manner, M. Horányi, J. Kissel, B. A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, et al., Nature 362, 428 (1993).

    Article  ADS  Google Scholar 

  20. V. E. Fortov, A. P. Nefedov, O. S. Vaulina, A. M. Lipaev, V. I. Molotkov, A. A. Samaryan, V. P. Nikitski, A. I. Ivanov, S. F. Savin, A. V. Kalmykov, A. Ya. Solov’ev, and P. V. Vinogradov, J. Exp. Theor. Phys. 87, 1087 (1998).

    Article  ADS  Google Scholar 

  21. M. Rosenberg and D. A. Mendis, IEEE Trans. Plasma Sci. 23, 177 (1995).

    Article  ADS  Google Scholar 

  22. M. Rosenberg, D. A. Mendis, and D. P. Sheehan, IEEE Trans. Plasma Sci. 24, 1422 (1996).

    Article  ADS  Google Scholar 

  23. V. W. Chow, D. A. Mendis, and M. Rosenberg, J. Geophys. Res.: Space Phys. 98, 19065 (1993).

    Article  ADS  Google Scholar 

  24. W. F. El-Taibany and M. Wadati, Phys. Plasmas 14, 103703 (2007).

  25. A. A. Mamun and A. Mannan, Waves Random Complex Media, 2021. https://doi.org/10.1080/17455030.2021.1936285

  26. R. K. Shikha, M. M. Orani, and A. A. Mamun, Results Phys. 27, 104507 (2021).

  27. A. A. Mamun and B. E. Sharmin, AIP Adv. 10, 125317 (2020).

  28. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  29. Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001).

    Article  ADS  Google Scholar 

  30. A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1468 (2002).

    Article  ADS  Google Scholar 

  31. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  32. S. I. Popel, V. N. Tsytovich, and M. Y. Yu, Astrophys. Space Sci. 256, 107 (1997).

    Article  ADS  Google Scholar 

  33. S. I. Popel, A. A. Gisko, A. P. Golub’, T. V. Losseva, R. Bingham, and P. K. Shukla, Phys. Plasmas 7, 2410 (2000).

    Article  ADS  Google Scholar 

  34. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  35. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 46, 1089 (2020).

    Article  ADS  Google Scholar 

  36. S. I. Popel, A. P. Golub’, T. V. Losseva, and R. Bingham, JETP Lett. 73, 223 (2001).

    Article  ADS  Google Scholar 

  37. S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Lett. A 274, 162 (2000).

    Article  ADS  Google Scholar 

  38. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  39. R. A. Treumann, Phys. Scr. 59, 19 (1999).

    Article  ADS  Google Scholar 

  40. K. Arshad, Z. Ehsan, S. A. Khan, and S. Mahmood, Phys. Plasmas 21, 023704 (2014).

  41. G. Livadiotis, M. I. Desai, and L. B. Wilson III, Astrophys. J. 853, 142 (2018).

    Article  ADS  Google Scholar 

  42. R. A. Cairns, A. A. Mamun, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  43. H. Naim, I. A. Khan, Z. Iqbal, and G. Murtaza, Eur. Phys. J. Plus 134, 442 (2019).

    Article  Google Scholar 

  44. M. N. S. Qureshi, H. A. Shah, G. Murtaza, S. J. Schwartz, and F. Mahmood, Phys. Plasmas 11, 3819 (2004).

    Article  ADS  Google Scholar 

  45. W. F. El-Taibany and R. M. Taha, Contrib. Plasma Phys. 59, e201800072 (2019).

  46. P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, Geophys. Res. Lett. 21, 1827 (1994).

    Article  ADS  Google Scholar 

  47. R. Boström, IEEE Trans. Plasma Sci. 20, 756 (1992).

    Article  ADS  Google Scholar 

  48. A. A. Mamun, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 1852 (1997).

    Google Scholar 

  49. R.-A. Tang and J.-K. Xue, Phys. Plasmas 11, 3939 (2004).

    Article  ADS  Google Scholar 

  50. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolutionary Equations, and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1991).

    Book  MATH  Google Scholar 

  51. B. Konopelchenko, Solitons in Multidimensions: Inverse Spectral Transform Method (World Scientific, Singapore, 1993).

    Book  MATH  Google Scholar 

  52. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970).

    ADS  Google Scholar 

  53. R. Hatakeyama and W. Oohara, Phys. Scr. 2005, 101 (2005).

    Article  Google Scholar 

  54. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  55. X. Mushinzimana, F. Nsengiyumva, L. L. Yadav, and T. K. Baluku, AIP Adv. 12, 015208 (2022).

  56. J. X. Ma and J. Liu, Phys. Plasmas 4, 253 (1997).

    Article  ADS  Google Scholar 

  57. A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).

    Article  ADS  Google Scholar 

  58. A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).

    Article  ADS  Google Scholar 

  59. S. K. El-Labany, S. A. El-Warraki, and W. M. Moslem, J. Plasma Phys. 63, 343 (2000).

    Article  ADS  Google Scholar 

  60. S. Maxon and J. Viecelli, Phys. Fluids 17, 1614 (1974).

    Article  ADS  Google Scholar 

  61. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  62. W. Guo, S. Wang, and J. Li, Phys. Plasmas 17, 112510 (2010).

  63. W. M. Moslem, R. Sabry, and P. K. Shukla, Phys. Plasmas 17, 032305 (2010).

  64. S. Reyad, M. M. Selim, A. El-Depsy, and S. K. El-Labany, Phys. Plasmas 25, 083701 (2018).

  65. M. M. Selim and U. M. Abdelsalam, Astrophys. Space Sci. 353, 535 (2014).

    Article  ADS  Google Scholar 

  66. J. Borhanian and M. Shahmansouri, Phys. Plasmas 20, 013707 (2013).

  67. A. Mannan and T. Dohnal, Phys. Plasmas 27, 012102 (2020).

  68. A. Mannan, S. Sultana, R. Schlickeiser, and T. Dohnal, Plasma Phys. Rep. 46, 195 (2020).

    Article  ADS  Google Scholar 

  69. A. Mannan, IEEE Trans. Plasma Sci. 48, 3791 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

S. Tarofder is grateful to the Bangladesh Ministry of Science and Technology for awarding the National Science and Technology (NST) Fellowship. A. A. Mamun acknowledges the financial support of the University Grants Commission Bangladesh through its yearly research project for the year of 2020–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tarofder.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarofder, S., Mannan, A. & Mamun, A.A. Cylindrical Three Dimensional Dust–Ion–Acoustic Solitary Waves in Nonthermal Plasmas. Plasma Phys. Rep. 49, 1014–1022 (2023). https://doi.org/10.1134/S1063780X23600354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600354

Keywords:

Navigation