Skip to main content
Log in

Effect of Ultrasound on the Development of a Pulsed Electric Discharge in Conducting Water

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The development of an electrical breakdown in water with a conductivity of 255 µS/cm under the effect of ultrasonic waves for the “tip–pin” geometry of electrodes with an interelectrode gap of 8 mm is experimentally studied. It is found that at the same voltage close to the minimum breakdown voltage the probability of the breakdown initiation and discharge closure of the gap increases by two times when exposed to ultrasound without cavitation, and the time of the pre-breakdown stage is reduced compared to the breakdown without ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. L. Bergmann, Ultrasonics and Their Scientific and Technical Applications (Wiley, New York, 1951).

    Google Scholar 

  2. High-Intensity Ultrasonic Fields, Ed. by L. D. Rozenberg (Nauka, Moscow, 1968; Plenum Press, New York, 1971).

  3. Ultrasonic Technology, Ed. by B. A. Agranat (Metallurgija, Moscow, 1974) [in Russian].

    Google Scholar 

  4. M. P. Matheny and K. F. Graff, in Power Ultrasonics— Applications of High-Intensity Ultrasound, Ed. by J. A. Gallego-Juárez and K. F. Graff (Woodhead, Cambridge, 2015), p. 259.

  5. V. B. Vikulina and P. D. Vikulin, Stroit.: Nauka Obraz., No. 1, 3 (2016).

  6. R. N. Golykh, Am. J. Eng. Res. 11, 159 (2016).

    Google Scholar 

  7. R. N. Golykh, J. Appl. Fluid Mech. 10, 1235 (2017).

    Article  Google Scholar 

  8. G. V. Myuller, in Coagulation of Colloids, Ed. by A. I. Rabunovich and P. S. Vasil’ev (ONTI, Moscow, 1936), p. 7 [in Russian].

    Google Scholar 

  9. A. V. Abramov, G. Abramova, R. V. Cravotto, I. S. Nikonov, I. S. Fedulov, and V. K. Ivanov, Ultrason. Sonochem. 70, 105323 (2021).

  10. L. M. Panov, S. P. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and E. E. Son, J. Phys. D: Appl. Phys. 49, 385202 (2016).

  11. L. M. Panov, S. P. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and E. E. Son, J. Phys. D: Appl. Phys. 51, 354003 (2018).

  12. L. M. Panov, S. P. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and E. E. Son, Plasma Phys. Rep. 42, 1074 (2016).

    Article  ADS  Google Scholar 

  13. L. M. Panov, S. P. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and A. S. Saveliev, Plasma Phys. Rep. 44, 882 (2018).

    Article  ADS  Google Scholar 

  14. V. Ya. Panov, V. Ya. Pecherkin, L. M. Vasilyak, and S. P. Vetchinin, Plasma Phys. Rep. 47, 623 (2020).

    Article  ADS  Google Scholar 

  15. V. Ya. Ushakov, V. F. Klimkin, and S. M. Korobeinikov, Impulse Breakdown in Liquids (Springer, Berlin, 2007).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-08-01091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Panov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.A., Pecherkin, V.Y., Vasilyak, L.M. et al. Effect of Ultrasound on the Development of a Pulsed Electric Discharge in Conducting Water. Plasma Phys. Rep. 49, 527–530 (2023). https://doi.org/10.1134/S1063780X23600226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600226

Keywords:

Navigation