Skip to main content
Log in

Diagnostics of Hot Electron Component Escaping from Dense Nonequilibrium Plasma of Continuous ECR Discharge

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The energy distribution of hot electrons escaping from the plasma of the ion source based on the discharge ignited under conditions of electron cyclotron resonance (ECR) was studied experimentally. The measurements were performed in wide ranges of microwave heating powers and neutral gas pressures. The facility under study is capable of providing uniquely high unit energy input into the plasma confined in the quasi-gas-dynamic (collisional) regime. In the course of the experiments, the diagnostics was performed of microwave radiation generated by the hot fraction of electrons escaping from the plasma. The regimes were discovered, in which the conditions are satisfied for the development of kinetic instabilities in the ECR discharge plasma. The energies are determined of electrons that cause the development of instabilities of this type, which are characterized by bursts of microwave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasma (Institute of Physics, Bristol, 1996).

    Google Scholar 

  2. L. Zhu, W. Wu, S. R. Yu, L. T. Sun, Y. Y. Chen, E. M. Mei, D. S. Ni, and Z. Y. Du, Cryogenics 112, 103192 (2020). https://doi.org/10.1016/j.cryogenics.2020.103192

  3. A. G. Shalashov, E. D. Gospodchikov, I. V. Izotov, D. A. Mansfeld, V. A. Skalyga, and O. Tarvainen, Phys. Rev. Lett. 120, 155001 (2018). https://doi.org/10.1103/PhysRevLett.120.155001

  4. R. Fischer and V. Dose, Plasma Phys. Controlled Fusion 41, 1109 (1999). https://doi.org/10.1088/0741-3335/41/9/304

    Article  ADS  Google Scholar 

  5. I. P. Vinogradov, Plasma Sources Sci. Technol. 8, 299 (1999). https://doi.org/10.1088/0963-0252/8/2/311

    Article  ADS  Google Scholar 

  6. D. Hemmers, H. Kempkens, and J. Uhlenbusch, J. Phys. D: Appl. Phys. 34, 2315 (2001). https://doi.org/10.1088/0022-3727/34/15/311

    Article  ADS  Google Scholar 

  7. T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, Plasma Sources Sci. Technol. 10, 181 (2001). https://doi.org/10.1088/0963-0252/10/2/308

    Article  ADS  Google Scholar 

  8. S. V. Golubev, I. V. Izotov, D. A. Mansfeld, and V. E. Semenov, Rev. Sci. Instrum. 83, 02B504 (2012). https://doi.org/10.1063/1.3673012

  9. V. A. Skalyga, A. F. Bokhanov, S. V. Golubev, I. V. Izotov, M. Yu. Kazakov, E. M. Kiseleva, R. L. Lapin, S. V. Razin, R. A. Shaposhnikov, and S. S. Vybin, Rev. Sci. Instrum. 90, 123308 (2019). https://doi.org/10.1063/1.5128489

  10. V. A. Skalyga, S. V. Golubev, I. V. Izotov, M. Yu. Kazakov, R. L. Lapin, S. V. Razin, A. V. Sidorov, R. A. Shaposhnikov, and A. F. Bokhanov, EPJ Web Conf. 187, 01018 (2018). https://doi.org/10.1051/epjconf/201818701018

  11. A. Lapierre, J. Benitez, M. Okamura, D. Todd, D. Xie, and Y. Sun, arXiv:2205.12873, 2022.

  12. V. P. Pastukhov, Nucl. Fusion 14, 3 (1974).

    Article  Google Scholar 

  13. A. V. Turlapov and V. E. Semenov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 5937 (1998).

    Google Scholar 

  14. Y. Lin and D. C. Joy, Surf. Interface Anal. 37, 895 (2005).

    Article  Google Scholar 

  15. T. Tabata, in Proceedings of the 14th EGS Users’ Meeting in Japan, Tsukuba, 2007, KEK Proc. 2007-5. https://doi.org/10.13140/2.1.3458.9125

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-12-00262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kiseleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, E.M., Viktorov, M.E., Skalyga, V.A. et al. Diagnostics of Hot Electron Component Escaping from Dense Nonequilibrium Plasma of Continuous ECR Discharge. Plasma Phys. Rep. 49, 449–453 (2023). https://doi.org/10.1134/S1063780X23600111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600111

Keywords:

Navigation