Skip to main content
Log in

Changes in Statistical Characteristics of Turbulent Plasma Density Fluctuations During a Transport Transition in the L-2M Stellarator

  • STELLARATORS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

At the specific power of electron cyclotron resonance (ECR) heating of 3.2 MW m–3 (plasma density of 2 × 1019 m–3, electron temperature of 0.6 keV), an increase in the plasma energy lifetime by not less than 30% is accompanied by a two-time-decrease in the level of short-wave turbulent density fluctuations. In such a shot, before the beginning of the quasi-stationary confinement stage, the turbulent state of density fluctuations is characterized by the stronger deviation from zero of the coefficient of excess of fluctuation increments than it is in shots without transport transitions. This indicates the stronger deviation of the probability distribution function of density fluctuation increments from the normal law in shots with transport transitions. Based on the analysis of increments of short-wave fluctuations using the special method for separating the continuous components in stochastic processes, a qualitative difference was established between the behaviors of the structural components forming the plasma turbulence in shots with and without transport transitions. In addition, for shots with transport transitions, a change in the shape of the approximating finite mixture of normal distributions and parameters of its component densities is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. P. Budaev, S. P. Savin, and L. M. Zelenyi, Phys.–Usp. 54, 875 (2011). https://doi.org/10.3367/ufne.0181.201109a.0905

    Article  Google Scholar 

  2. T. S. Hahm and P. H. Diamond, J. Korean Phys. Soc. 73, 747 (2018). https://doi.org/10.3938/jkps.73.747

    Article  ADS  Google Scholar 

  3. T. Happel, T. Estrada, E. Blanco, C. Hidalgo, G. D. Conway, U. Stroth, and TJ-II Team, Phys. Plasmas 18, 102302 (2011). https://doi.org/10.1063/1.3646315

  4. B. Ph. van Milligen, B. A. Carreras, I. Voldiner, U. Losada, C. Hidalgo, and TJ-II Team, Phys. Plasmas 28, 092302 (2021). https://doi.org/10.1063/5.0057791

  5. A. Fujisawa, H. Iguchi, T. Minami, Y. Yoshimura, H. Sanuki, K. Itoh, S. Lee, K. Tanaka, M. Yokoyama, M. Kojima, S.-I. Itoh, S. Okamura, R. Akiyama, K. Ida, M. Isobe, et al., Phys. Rev. Lett. 82, 2669 (1999). https://doi.org/10.1103/PhysRevLett.82.2669

    Article  ADS  Google Scholar 

  6. D. A. Shelukhin, V. A. Vershkov, and K. A. Razumova, Plasma Phys. Rep. 31, 985 (2005). https://doi.org/10.1134/1.2147644

    Article  ADS  Google Scholar 

  7. S. I. Lashkul, S. V. Shatalin, A. B. Altukhov, E. O. Vekshina, V. V. Dyachenko, L. A. Esipov, M. Yu. Kantor, D. V. Kuprienko, A. Yu. Popov, A. Yu. Stepanov, and A. P. Sharpeonok, Plasma Phys. Rep. 32, 353 (2006). https://doi.org/10.1134/S1063780X06050011

    Article  ADS  Google Scholar 

  8. S. V. Shatalin, A. V. Pavlov, A. Yu. Popov, S. I. Lashkul, and L. A. Esipov, Plasma Phys. Rep. 33, 169 (2007). https://doi.org/10.1134/S1063780X07030014

    Article  ADS  Google Scholar 

  9. T. L. Rhodes, W. A. Peebles, J. C. DeBoo, R. Prater, J. E. Kinsey, G. M. Staebler, J. Candy, M. E. Austin, R. V. Bravenec, K. H. Burrell, J. S. deCrassie, E. J. Doyle, P. Gohil, C. M. Greenfield, R. J. Groebner, et al., Plasma Phys. Control. Fusion 49, B183 (2007). https://doi.org/10.1088/0741-3335/49/12B/S17

    Article  ADS  Google Scholar 

  10. T. L. Rhodes, W. A. Peebles, M. A. Van Zeeland, J. S. deCrassie, R. V. Bravenec, K. H. Burrell, J. C. DeBoo, J. Lohr, C. C. Petty, X. V. Nguyen, E. J. Doyle, C. M. Greenfield, L. Zeng, and G. Wang, Phys. Plasmas 14, 056117 (2007). https://doi.org/10.1063/1.2714019

  11. V. Yu. Korolev, Probabilistic-Statistical Methods for Volatility Decomposition of Chaotic Processes (Izd-vo MGU, Moscow, 2011) [in Russian].

    MATH  Google Scholar 

  12. N. N. Skvortsova, D. K. Akulina, G. M. Batanov, N. K. Kharchev, L. V. Kolik, L. M. Kovrizhnykh, A. A. Letunov, V. P. Logvinenko, D. V. Malakhov, A. E. Petrov, A. A. Pshenichnikov, K. A. Sarksyan, and G. S. Voronov, Plasma Phys. Control. Fusion 52, 055008 (2010). https://doi.org/10.1088/0741-3335/52/5/055008

  13. J. H. Nicolau, L. Garcia, B. A. Carreras, and B. Ph. van Milligen, Phys. Plasmas 25, 102304 (2018). https://doi.org/10.1063/1.5041495

  14. G. M. Batanov, V. D. Borzosekov, A. K. Gorshenin, N. K. Kharchev, V. Yu. Korolev, and K. A. Sarksyan, Plasma Phys. Control. Fusion 61, 075006 (2019). https://doi.org/10.1088/1361-6587/ab1117

  15. G. M. Batanov, V. D. Borzosekov, D. G. Vasil’kov, I. Yu. Vafin, S. E. Grebenshchikov, E. M. Konchekov, A. A. Letunov, A. I. Meshcheryakov, K. A. Sarksyan, M. A. Tereshchenko, N. K. Kharchev, and Yu. V. Khol’nov, Prikl. Fiz., No. 6, 61 (2015).

  16. D. G. Vasil’kov, G. M. Batanov, V. D. Borzosekov, I. Yu. Vafin, S. E. Grebenshchikov, I. A. Grishina, V. A. Ivanov, A. A. Letunov, V. P. Logvinenko, A. I. Meshcheryakov, M. N. Petrova, V. D. Stepakhin, N. K. Kharchev, and Yu. V. Khol’nov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 43 (3), 79 (2020). https://doi.org/10.21517/0202-3822-2020-43-3-79-89

    Article  Google Scholar 

  17. G. M. Batanov, V. D. Borzosekov, N. K. Kharchev, A. A. Letunov, D. V. Malakhov, K. A. Sarksyan, and D. G. Vasilkov, in Proceedings of the 46th EPS Conference on Plasma Physics, Milan, 2019, Paper P2.1095. http://ocs.ciemat.es/EPS2019PAP/pdf/P2.1095.pdf.

  18. G. M. Batanov, V. D. Borzosekov, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, N. K. Kharchev, and A. A. Kharchevskii, Plasma Phys. Rep. 46, 955 (2020). https://doi.org/10.1134/S1063780X20100025

    Article  ADS  Google Scholar 

  19. Stochastic Models of Structural Plasma Turbulence, Ed. by V. Yu. Korolev and N. N. Skvortsova (MAKS Press, Moscow, 2003; VSP, Leiden, 2006)

  20. D. K. Akulina, E. D. Andryukhina, M. S. Berezhetskii, S. E. Grebenshchikov, G. S. Voronov, I. S. Sbitnikova, O. I. Fedyanin, Yu. V. Kholnov, and I. S. Shpigel, Sov. J. Plasma Phys. 4, 569 (1978).

    ADS  Google Scholar 

  21. G. M. Batanov, V. I. Belousov, Yu. F. Bondar’, V. D. Borzosekov, D. G. Vasil’kov, S. E. Grebenshchikov, I. A. Ivannikov, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, N. V. Matveev, A. I. Meshcheryakov, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, et al., Plasma Phys. Rep. 39, 1088 (2013). https://doi.org/10.1134/S1063780X1307012X

    Article  ADS  Google Scholar 

  22. A. I. Meshcheryakov, D. K. Akulina, G. M. Batanov, M. S. Berezhetskii, G. S. Voronov, G. A. Gladkov, S. E. Grebenshchikov, V. A. Grinchuk, I. A. Grishina, L. V. Kolik, N. F. Larionova. A. A. Letunov, V. P. Logvinenko, A. E. Petrov, A. A. Pshenichnikov, et al., Plasma Phys. Rep. 31, 452 (2005). https://doi.org/10.1134/1.1947330

    Article  ADS  Google Scholar 

  23. K. Itoh, S.-I. Itoh, and A. Fukuyama, J. Phys. Soc. Jpn. 58, 482 (1989). https://doi.org/10.1143/JPSJ.58.482

    Article  ADS  Google Scholar 

  24. U. Stroth, T. Geist, J. P. T. Koponen, H.-J. Hartfuß, P. Zeiler, and ECRH and W7-AS team, Phys. Rev. Lett. 82, 928 (1999). https://doi.org/10.1103/PhysRevLett.82.928

    Article  ADS  Google Scholar 

  25. V. Erckmann and U. Gasparino, Plasma Phys. Control. Fusion 36, 1869 (1994). https://doi.org/10.1088/0741-3335/36/12/001

    Article  ADS  Google Scholar 

  26. V. F. Andreev, A. A. Borschegovskij, V. V. Chistyakov, Yu. N. Dnestrovskij, E. P. Gorbunov, N. V. Kasyanova, S. E. Lysenko, A. V. Melnikov, T. B. Myalton, I. N. Roy, D. S. Sergeev, and V. N. Zenin, Plasma Phys. Control. Fusion 58, 055008 (2016). https://doi.org/10.1088/0741-3335/58/5/055008

  27. D. K. Akulina, G. A. Gladkov, Y. I. Nechaev, and O. I. Fedyanin, Plasma Phys. Rep. 23, 28 (1997).

    ADS  Google Scholar 

  28. A. S. Sakharov, D. K. Akulina, G. A. Gladkov, and M. A. Tereshchenko, Plasma Phys. Rep. 32, 729 (2006). https://doi.org/10.1134/S1063780X06090030

    Article  ADS  Google Scholar 

  29. I. Yu. Vafin, PhD Tesis (Prokhorov General Physics Inst., Russ. Acad. Sci., Moscow, 2013).

    Google Scholar 

  30. S. E. Grebenshchikov, B. I. Kornev, N. F. Larionova, and A. V. Novikova, in Plasma Physics and Plasma Electronics, Ed. by L. M. Kovrizhnykh (Nauka, Moscow, 1985; Nova Science, Commack, NY, 1989).

  31. E. D. Andryukhina and O. I. Fedyanin, Sov. J. Plasma Phys. 3, 447 (1977).

    ADS  Google Scholar 

  32. S. E. Grebenshchikov, N. K. Kharchev, and D. G. Vasil’kov, Plasma Phys. Rep. 45, 1059 (2019). https://doi.org/10.1134/S1063780X19110047

  33. G. M. Batanov, V. D. Borzosekov, E. M. Konchekov, D. V. Malakhov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Inzh. Fiz., No. 10, 56 (2013).

  34. G. M. Batanov, V. D. Borzosekov, L. M. Kovrizhnykh, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 39, 444 (2013). https://doi.org/10.1134/S1063780X13060019

    Article  ADS  Google Scholar 

  35. G. M. Batanov, V. D. Borzosekov, L. V. Kolik, D. V. Malakhov, A. E. Petrov, A. A. Pshenichnikov, K. A. Sarksyan, N. N. Skvortsova, and N. K. Kharchev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 34 (2), 70 (2011).

    Google Scholar 

  36. A. A. Pshenichnikov, L. V. Kolik, N. I. Malykh, A. E. Petrov, M. A. Tereshchenko, N. K. Kharchev, and Yu. V. Khol’nov, Plasma Phys. Rep. 31, 554 (2005). https://doi.org/10.1134/1.1992582

    Article  ADS  Google Scholar 

  37. D. Malakhov, N. Skvortsova, A. Gorshenin, V. Korolev, A. Chirkov, and B. Tedtoev, in XXXII International Seminar on Stability Problems for Stochastic Models, Trondheim, 2014, Book of Abstracts, p. 68.

  38. N. N. Skvortsova, A. Yu. Chirkov, A. A. Kharchevsky, D. V. Malakhov, A. K. Gorshenin, and V. Yu. Korolev, J. Phys.: Conf. Ser. 666, 012007 (2016). https://doi.org/10.1088/1742-6596/666/1/012007

  39. A. Gorshenin and V. Korolev, in Proceedings of the 27th European Conference on Modelling and Simulation, ECMS 2013, Ålesund, Norway, May 27–30, 2013, Ed. by W. Rekdalsbakken, R. T. Bye, and H. Zhang (Digitaldruck Pirrot GmbHP, Dudweiler, 2013), p. 569.

  40. G. M. Batanov, A. K. Gorshenin, V. Yu. Korolev, D. V. Malakhov, and N. N. Skvortsova, Math. Models Comput. Simul. 4, 10 (2012). https://doi.org/10.1134/S2070048212010048

    Article  Google Scholar 

  41. A. K. Gorshenin, AIP Conf. Proc. 1648, 250008 (2015). https://doi.org/10.1063/1.4912512

  42. A. K. Gorshenin, V. Yu. Korolev, and A. A. Shcherbinina, Inf. Ee Primen. 14 (3), 3 (2020). https://doi.org/10.14357/19922264200301

    Google Scholar 

  43. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Fizmatlit, Moscow, 2004; Martino Publishing, Mansfield Centre, CT, 2012).

  44. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 91, 655 (2010). https://doi.org/10.1134/S0021364010120088

    Article  ADS  Google Scholar 

  45. S. K. Nielsen, M. Salewski, E. Westerhof, W. Bongers, S. B. Korsholm, F. Leipold, J. W. Oosterbeek, D. Moseev, M. Stejner, and the TEXTOR Team, Plasma Phys. Control. Fusion 55, 115003 (2013). https://doi.org/10.1088/0741-3335/55/11/115003

  46. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 94, 277 (2011). https://doi.org/10.1134/S0021364011160053

    Article  ADS  Google Scholar 

  47. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Control. Fusion 62, 025028 (2020). https://doi.org/10.1088/1361-6587/ab5ba8

  48. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 27, 082502 (2020). https://doi.org/10.1063/5.0011949

  49. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Control. Fusion 63, 125017 (2021). https://doi.org/10.1088/1361-6587/ac301c

  50. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016). https://doi.org/10.1063/1.4959849

  51. A. S. Sakharov, Plasma Phys. Rep. 45, 289 (2019). https://doi.org/10.1134/S1063780X19030085

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Statistical analysis of ensembles of experimental data was performed by A.K. Gorshenin using the infrastructure of the Shared Research Facilities “High Performance Computing and Big Data” (CKP “Informatics”) of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences (Moscow). The authors express their gratitude to the sc-ientific team of the L-2M stellarator represented by I.Yu. Vafin, A.I. Meshcheryakov, I.A. Grishina, D.G. Vasilkov, S.E. Grebenshchikov, and Yu.V. Kholnov for providing measurement data on the mean plasma density, electron temperature, plasma energy content, and limiter voltage.

Funding

The article was prepared with partial financial support from the Ministry of Education and Science of the Russian Federation as part of the implementation of the program of the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2022-284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Borzosekov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batanov, G.M., Borzosekov, V.D., Gorshenin, A.K. et al. Changes in Statistical Characteristics of Turbulent Plasma Density Fluctuations During a Transport Transition in the L-2M Stellarator. Plasma Phys. Rep. 48, 740–753 (2022). https://doi.org/10.1134/S1063780X2270026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2270026X

Keywords:

Navigation