Skip to main content
Log in

Gas Heating under Conditions of Pulsating Transverse–Longitudinal Discharge in Subsonic and Supersonic Airflows

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents the results of experimental studies of an unsteady pulsating transverse–longitudinal discharge created in high-speed air and propane–air mixture flows. It is shown that, under the conditions of such a discharge, near the electrodes, the gas is strongly heated, to temperatures of 6000–9000 K, and the gas temperature increases with increasing discharge current and airflow velocity. Test experiments were carried out, the results of which show that, under the conditions of an electrode transverse–longitudinal discharge, quasi-steady non-self-sustained combustion of a supersonic flow of a propane–air mixture is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. G. Chernyi, Gas Flows at High Supersonic Speeds (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  2. G. N. Abramovich, Applied Gas Dynamics, 4th ed. (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. Theory and Calculations of Air Jet Engines, Textbook for Universities, 2nd ed., Ed. by S. M. Shlyakhtenko (Mashinostroenie, Moscow, 1987) [in Russian].

    Google Scholar 

  4. F. Bartlmä, Gasdynamik der Verbrennung (Springer-Verlag, Wien, 1975).

    Book  Google Scholar 

  5. V. I. Alferov and A. S. Bushmin, Sov. Phys.–JETP. 17, 1190 (1963).

    Google Scholar 

  6. V. I. Alferov, A. S. Bushmin, and B. V. Kalachev, Sov. Phys.–JETP 24, 859 (1967).

    ADS  Google Scholar 

  7. N. T. Pashchenko and Yu. P. Raizer, Sov. J. Plasma Phys. 8, 617 (1982).

    ADS  Google Scholar 

  8. Yu. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, A. A. Enenko, B. V. Postnikov, and K. A. Lomanovich, Teplofiz. Vys. Temp. 48 (1, Suppl.), 35 (2010).

    Google Scholar 

  9. Y. D. Korolev and I. B. Matveev, IEEE Trans. Plasma Sci. 34, 2507 (2006).

    Article  ADS  Google Scholar 

  10. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, IEEE Trans. Plasma Sci. 35, 1651 (2007).

    Article  ADS  Google Scholar 

  11. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, IEEE Trans. Plasma Sci. 37, 586 (2009).

    Article  ADS  Google Scholar 

  12. G. G. Chernyi, in Proceedings of the 3rd Weakly Ionized Gases Workshop, Norfolk, VA, 1999, Paper AIAA-99-4819.

  13. V. M. Fomin, P. K. Tretyakov, and J.-P. Taran, Aerosp. Sci. Technol. 8, 411 (2004).

    Article  Google Scholar 

  14. S. M. Starikovskaya, J. Phys. D: Appl. Phys. 39, R265 (2006).

    Article  ADS  Google Scholar 

  15. A. Y. Starikovskii, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, M. M. Nudnova, A. E. Rakitin, D. V. Roupassov, S. M. Starikovskaia, and V. P. Zhukov, J. Propul. Power 24, 1182 (2008).

    Article  Google Scholar 

  16. I. V. Adamovich, W. R. Lempert, J. W. Rich, Y. G. Utkin, and M. Nishihara, J. Propul. Power 24, 1198 (2008).

    Article  Google Scholar 

  17. N. L. Aleksandrov, S. V. Kindysheva, E. N. Kukaev, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 35, 867 (2009).

    Article  ADS  Google Scholar 

  18. L. S. Jacobsen, C. D. Carter, T. A. Jackson, S. Williams, J. Barnett, D. Bivolaru, S. Kuo, C.-J. Tam, and R. A. Baurle, J. Propul. Power 24, 641 (2008).

    Article  Google Scholar 

  19. S. Leonov, D. Yarantsev, and C. Carter, J. Propul. Power 25, 289 (2009).

    Article  Google Scholar 

  20. K. B. Artem’ev, S. Yu. Kazantsev, N. G. Kononov, I. A. Kossyi, N. I. Malykh, N. A. Popov, N. M. Tarasova, E. A. Filimonova, and K. N. Firsov, J. Phys. D: Appl. Phys. 46, 055201 (2013).

  21. V. M. Shibkov, A. F. Aleksandrov, V. A. Chernikov, A. P. Ershov, and L. V. Shibkova, J. Propul. Power 25, 123 (2009).

    Article  Google Scholar 

  22. I. Esakov, L. Grachev, K. Khodataev, and D. Van Wie, in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, Paper AIAA 2004-840. https://arc.aiaa.org/doi/10.2514/6.2005-989

  23. P. V. Kopyl, O. S. Surkont, V. M. Shibkov, and L. V. Shibkova, Plasma Phys. Rep. 38, 503 (2012).

    Article  ADS  Google Scholar 

  24. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 43, 373 (2017).

    Article  ADS  Google Scholar 

  25. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 44, 754 (2018).

    Article  ADS  Google Scholar 

  26. V. M. Shibkov, L. V. Shibkova, P. V. Kopyl, and A. A. Logunov, High Temp. 57, 164 (2019).

    Article  Google Scholar 

  27. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 5, 43 (2018).

  28. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Moscow Univ. Phys. Bull. 72, 294 (2017).

    Article  ADS  Google Scholar 

  29. L. V. Shibkova, V. M. Shibkov, A. A. Logunov, D. S. Dolbnya, and K. N. Kornev, High Temp. 58, 754 (2020).

    Article  Google Scholar 

  30. A. A. Logunov, K. N. Kornev, L. V. Shibkova, and V. M. Shibkov, High Temp. 59, 19 (2021).

    Article  Google Scholar 

  31. V. M. Shibkov, High Temp. 57, 322 (2019).

    Article  Google Scholar 

  32. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].

  33. L. V. Shibkova and V. M. Shibkov, Discharges in Noble Gas Mixtures (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  34. V. I. Malyshev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  35. Optical Plasma Pyrometry, Ed. by N. N. Sobolev (Inostrannaya Literatura, Moscow, 1969) [in Russian].

    Google Scholar 

  36. H. Maecker and T. Peters, Z. Phys. 139, 448 (1954).

    Article  ADS  Google Scholar 

  37. J. L. Spier and M. M. Smit-Miessen, Physica 9, 422 (1942).

    Article  ADS  Google Scholar 

Download references

Funding

Konstantin Kornev is a grantee of the Foundation for the Development of Theoretical Physics and Mathematics “BASIS” and thanks it for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shibkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, V.M., Kornev, K.N., Logunov, A.A. et al. Gas Heating under Conditions of Pulsating Transverse–Longitudinal Discharge in Subsonic and Supersonic Airflows. Plasma Phys. Rep. 48, 798–805 (2022). https://doi.org/10.1134/S1063780X22700246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22700246

Keywords:

Navigation