Skip to main content
Log in

Electric Field in a Positive Streamer in Long Air Gaps

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A numerical simulation of a positive streamer in long (up to 3 m) air gaps under normal conditions was performed within the 1.5D model taking into account the ionization expansion of the channel. It is shown that the average electric field in the channel and the field required to bridge the discharge gap are not universal values and strongly depend on the regime of streamer acceleration after its initiation. In particular, these fields can vary in the range of 3.4–11.2 kV/cm in air at atmospheric pressure, depending on the change in the external electric field in space and time in the initial phase of streamer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. B. Loeb, Fundamental Processes of Electrical Discharges in Gases (Wiley, New York, 1939).

    Google Scholar 

  2. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  3. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  4. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  5. S. Nijdam, J. Teunissen, and U. Ebert, Plasma Sources Sci. Technol. 29, 103001 (2020).

  6. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  7. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  8. A. Fridman, Plasma Chemistry (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  9. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).

  10. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013).

    Article  Google Scholar 

  11. S. M. Starikovskaia, J. Phys. D: Appl. Phys. 47, 353001 (2014).

  12. Y. Ju and W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015).

    Article  Google Scholar 

  13. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  14. N. L. Aleksandrov, E. M. Bazelyan, N. A. Dyatko, and I. V. Kochetov, Plasma Phys. Rep. 24, 541 (1998).

    ADS  Google Scholar 

  15. D. F. Opaits, M. N. Shneider, P. J. Howard, R. B. Miles, and G. M. Milikh, Geophys. Rev. Lett. 37, L14801 (2010).

  16. N. E. Andersson, Ark. Fys. 13, 441 (1958).

    Google Scholar 

  17. C. T. Phelps and R. F. Griffiths, J. Appl. Phys. 47, 2929 (1976).

    Article  ADS  Google Scholar 

  18. F. E. Acker and G. W. Penney, J. Appl. Phys. 40, 2397 (1969).

    Article  ADS  Google Scholar 

  19. N. L. Allen and D. Dring, Proc. R. Soc. London, Ser. A 396, 281 (1984).

    ADS  Google Scholar 

  20. N. L. Allen and M. Boutlendj, IEE Proc. A: Sci., Meas. Technol. 138, 37 (1991).

    Google Scholar 

  21. N. L. Allen and A. Ghaffar, J. Phys. D: Appl. Phys. 28, 331 (1995).

    Article  ADS  Google Scholar 

  22. E. M. van Veldhuizen and W. R. Rutgers, J. Phys. D: Appl. Phys. 35, 2169 (2002).

    Article  ADS  Google Scholar 

  23. M. Seeger, T. Votteler, J. Ekeberg, S. Pancheshnyi, and L. Sánchez, IEEE Trans. Dielectr. Electr. Insul. 25, 2147 (2018).

    Article  Google Scholar 

  24. D. S. Aleksandrov, E. M. Bazelyan, and B. I. Bekzhanov, Izv. Akad. Nauk SSSR, Energ, Transp., No. 2, 120 (1984).

  25. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D: Appl. Phys. 29, 740 (1996).

    Article  ADS  Google Scholar 

  26. N. L. Aleksandrov and E. M. Bazelyan, Plasma Phys. Rep. 22, 417 (1996).

    ADS  Google Scholar 

  27. N. Babaeva and G. Naidis, J. Phys. D: Appl. Phys. 29, 2423 (1996).

    Article  ADS  Google Scholar 

  28. N. Babaeva and G. Naidis, Phys. Lett. A 215, 187 (1996).

    Article  ADS  Google Scholar 

  29. A. Yu. Starikovskiy and N. L. Aleksandrov, Plasma Sources Sci. Technol. 29, 075004 (2020).

  30. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D: Appl. Phys. 29, 2873 (1996).

    Article  ADS  Google Scholar 

  31. N. L. Aleksandrov, E. M. Bazelyan, and D. A. Novitskii, Tech. Phys. Lett. 24, 367 (1998).

    Article  ADS  Google Scholar 

  32. B. N. Gorin and A. V. Shkilev, Elektrichestvo, No. 6, 31 (1976).

  33. Les Renardieres Group, Electra 53, 31 (1977).

    Google Scholar 

  34. N. Babaeva and G. Naidis, IEEE Trans. Plasma Sci. 25, 375 (1997).

    Article  ADS  Google Scholar 

  35. Yu. V. Serdyuk, A. Larsson, S. M. Gubanski, and M. Akyuz, J. Phys. D: Appl. Phys. 34, 614 (2001).

    Article  ADS  Google Scholar 

  36. J. Qin and V. P. Pasko, J. Phys. D: Appl. Phys. 47, 435202 (2014).

  37. H. Francisco, J. Teunissent, B. Bagheri, and U. Ebert, Plasma Sources Sci. Technol. 30, 115007 (2021).

  38. A. E. Bazelyan and E. M. Bazelyan, High Temp. 31, 799 (1993).

    Google Scholar 

  39. X. Li, B. Guo, A. Sun, U. Ebert, and J. Teunissen, arX-iv:2201.11257.

  40. S. V. Pancheshnyi and A. Yu. Starikovskii, J. Phys. D: Appl. Phys. 36, 2683 (2003).

    Article  ADS  Google Scholar 

  41. S. Pancheshnyi, M. Nudnova, and A. Starikovskii, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 016407 (2005).

  42. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  ADS  Google Scholar 

  43. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  44. G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, K. Yan, and E. M. van Veldhuizen, J. Phys. D: Appl. Phys. 39, 3010 (2006).

    Article  ADS  Google Scholar 

  45. G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, and K. Yan, J. Phys. D: Appl. Phys. 41, 234001 (2008).

  46. I. Yagi, S. Okada, T. Matsumoto, D. Wang, T. Namihira, and K. Takaki, IEEE Trans. Plasma Sci. 39, 2232 (2011).

    Article  ADS  Google Scholar 

  47. T. T. J. Clevis, S. Nijdam, and U. Ebert, J. Phys. D: Appl. Phys. 46, 045202 (2013).

  48. N. Babaeva and G. Naidis, IEEE Trans. Plasma Sci. 44, 899 (2016).

    Article  ADS  Google Scholar 

  49. A. Yu. Starikovskiy, N. L. Aleksandrov, and M. N. Shneider, J. Appl. Phys. 129, 063301 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazelyan, E.M., Aleksandrov, N.L. Electric Field in a Positive Streamer in Long Air Gaps. Plasma Phys. Rep. 48, 789–797 (2022). https://doi.org/10.1134/S1063780X22700222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22700222

Keywords:

Navigation