Skip to main content
Log in

Simulation of a Transverse–Longitudinal Discharge in a Supersonic Air Flow in the Hydrodynamic Approximation

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Three-dimensional distributions of velocity, temperature and pressure in the supersonic air flow at M = 2, as well as the current density in the discharge initiated in it, are obtained. A direct current gas discharge of 10 A is considered in the hydrodynamic approximation within the channel model. The evolution of a transverse–longitudinal discharge is considered in the time range t up to 20 µs. It is shown that the discharge moves almost at the velocity of the main supersonic air flow disturbing it rather weakly. Based on the characteristic values of the current density and gas temperature of 8000–10 000 K obtained in the calculations, the electron density in the discharge channel is estimated as ne ~ 1016 cm–3. The field strength of E ~ 125 V/cm is estimated and the reduced field strength in the discharge channel E/N is about 30 Td. In the configuration of an aerodynamic model with shortened electrodes, the transition to the discharge phase fixed at their ends is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. S. B. Leonov, Energies 11, 1733 (2018). https://doi.org/10.3390/en11071733

    Article  Google Scholar 

  2. B. Lin, Y. Wu, Z. Zhang, and Z. Chen, Combust. Flame 182, 102 (2017). https://doi.org/10.1016/j.combustflame.2017.04.022

    Article  Google Scholar 

  3. N. Chintala, R. Meyer, A. Hicks, A. Bao, J. W. Rich, W. R. Lempert, and I. V. Adamovich, J. Propul. Power 21, 583 (2005). https://doi.org/10.2514/1.10865

    Article  Google Scholar 

  4. C. L. Enloe and T. E. McLaughlin, AIAA J. 42, 589 (2004). https://doi.org/10.2514/1.2305

    Article  ADS  Google Scholar 

  5. I. A. Znamenskaya, A. E. Lutsky, and I. V. Mursenkova, Tech. Phys. Lett. 30, 1036 (2004). https://doi.org/10.1134/1.1846850

    Article  ADS  Google Scholar 

  6. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutsky, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 52, 546 (2007). https://doi.org/10.1134/S1063784207050027

    Article  Google Scholar 

  7. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, J. Propul. Power 24, 1216 (2008). https://doi.org/10.2514/1.24795

    Article  Google Scholar 

  8. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 44, 754 (2018). https://doi.org/10.1134/S1063780X18080056

    Article  ADS  Google Scholar 

  9. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 43, 373 (2017). https://doi.org/10.1134/S1063780X17030114

    Article  ADS  Google Scholar 

  10. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 5, 43 (2018).

  11. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 3, 75 (2017).

  12. P. V. Kopyl, O. S. Surkont, V. M. Shibkov, and L. V. Shibkova, Plasma Phys. Rep. 38, 503 (2012).

    Article  ADS  Google Scholar 

  13. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].

  14. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, R. S. Konstantinovskii, O. S. Surkont, V. A. Chernikov, and L. V. Shibkova, Plasma Phys. Rep. 33, 72 (2007).

    Article  ADS  Google Scholar 

  15. V. M. Shibkov, L. V. Shibkova, V. G. Gromov, A. A. Karachev, and R. S. Konstantinovskii, High Temp. 49, 155 (2011).

    Article  Google Scholar 

  16. A. A. Logunov, K. N. Kornev, L. V. Shibkova, and V. M. Shibkov, High Temp. 59, 19 (2021).

    Article  Google Scholar 

  17. L. V. Shibkova, V. M. Shibkov, A. A. Logunov, D. S. Dolbnya, and K. N. Kornev, High Temp. 58, 754 (2020).

    Article  Google Scholar 

  18. S. A. Dvinin, A. P. Ershov, I. B. Timofeev, V. A. Chernikov, and V. M. Shibkov, High Temp. 42, 157 (2004).

    Article  Google Scholar 

  19. S. Kolev and A. Bogaerts, Plasma Sources Sci. Technol. 24, 015025 (2014).

  20. J. S. Shang, P. G. Huang, H. Yan, and S. T. Surzhikov, J. Appl. Phys. 105, 023303 (2009).

  21. M. Nishihara and I. V. Adamovich, IEEE Trans. Plasma Sci. 35, 1312 (2007).

    Article  ADS  Google Scholar 

  22. A. Firsov, V. Bityurin, D. Tarasov, A. Dobrovolskaya, R. Troshkin, and A. Bocharov, Energies 15, 7015 (2022).

    Article  Google Scholar 

  23. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  24. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum, New York, 1994).

    Book  Google Scholar 

  25. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

  26. A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, et al., Tables of Thermodynamic Functions of Air (for Temperatures from 6000 to 12 000 K and Pressures from 0.001 to 1000 atmospheres) (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Konstantin Kornev is a grantee of the Theoretical Physics and Mathematics Advancement Foundation “BASIS” and thanks it for its financial support.

Funding

The work was supported by the Russian Science Foundation (project no. 23-22-00233) https://rscf.ru/project/23-22-00233/

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Kornev, A. A. Logunov or V. M. Shibkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, K.N., Logunov, A.A. & Shibkov, V.M. Simulation of a Transverse–Longitudinal Discharge in a Supersonic Air Flow in the Hydrodynamic Approximation. Plasma Phys. Rep. 49, 380–386 (2023). https://doi.org/10.1134/S1063780X22602139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22602139

Keywords:

Navigation