Skip to main content
Log in

Lifetime of Cathode Spots on the Surface of Titanium upon Excitation of a Microplasma Discharge

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The structure of glow of the microplasma discharge (MPD) initiated in vacuum by a pulsed flow of external plasma on the surface of a titanium sample covered by a native-oxide film with a thickness of 2–6 nm was studied experimentally. When plasma with a density of 1013 cm–3 and electron temperature of 10 eV interacts with the surface of the sample that is held under negative potential of –400 V relative to the plasma potential, the outer surface of the oxide film acquires a positive electric charge as a result of exposure to the flux of plasma ions. In the process, strong electric field of about 4 MV/cm is induced inside the dielectric film. An electric breakdown between the charged film surface and the metal initiates a microplasma discharge on the surface of titanium. The integral glow of the microplasma discharge on the macroscopic scale represents a branched structure of the dendrite type that consists of a large number of bright “dot” formations, i.e., cathode spots localized on the metal surface with a luminous halo around them. A fragment of the titanium surface with an area of 0.5 × 0.4 mm2 in the region of cathode spots was studied by means of the high-speed IMACON-468 photo-framing camera. Based on analysis of the optical glow of the cathode spots in seven consecutive images captured by the photo-framing camera with the exposure time of each frame equal to 100 ns and the frame interval of 400 ns, the expected “lifetime” of the cathode spots was calculated and found to be in the range of 0.5 ± 0.2 μs. The average diameter of the cathode spots determined from the spatial distribution of the microdischarge glow was found to be about 16 ± 4 μm, while the average size of the luminous halo around each individual cathode spot reached 100 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, Plasma Phys. Rep. 34, 150 (2008). https://doi.org/10.1134/S1063780X08020074

    Article  ADS  Google Scholar 

  2. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, in Proceedings of the 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, 2008, Vol. 2, p. 575. https://doi.org/10.1109/DEIV.2008.4676859

  3. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, A. S. Sakharov, A. A. Dorofeyuk, T. I. Kamolova, S. N. Satunin, and A. A. Letunov, Plasma Phys. Rep. 37, 1230 (2011). https://doi.org/10.1134/S1063780X11060109

    Article  ADS  Google Scholar 

  4. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, A. S. Sakharov, T. I. Kamolova, A. A. Do-rofeyuk, and S. N. Satunin, Plasma Phys. Rep. 36, 1241 (2010). https://doi.org/10.1134/S1063780X10130258

    Article  ADS  Google Scholar 

  5. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, and I. A. Khrennikova, J. Frict. Wear 30, 290 (2009). https://doi.org/10.3103/S1068366609040114

    Article  Google Scholar 

  6. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, Plasma Phys. Rep. 42, 619 (2016). https://doi.org/10.1134/S1063780X16060039

    Article  ADS  Google Scholar 

  7. M. D. Stamate, Appl. Surf. Sci. 218, 318 (2003). https://doi.org/10.1016/S0169-4332(03)00624-X

    Article  ADS  Google Scholar 

  8. I. Oja, A. Mere, M. Krunks, R. Nisumaa, C.-H. Solterbeck, and M. Es-Souni, Thin Solid Films 515, 674 (2006). https://doi.org/10.1016/j.tsf.2005.12.243

    Article  ADS  Google Scholar 

  9. V. A. Ivanov, A. S. Sakharov, M. E. Konyzhev, T. I. Kamolova, A. A. Dorofeyuk, and L. I. Kuksenova, J. Phys.: Conf. Ser. 907, 012023 (2017). https://iopscience.iop.org/article/10.1088/1742-6596/907/1/012023/pdf.

  10. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, and I. A. Khrennikova, J. Mach. Manuf. Reliab. 44, 384 (2015). https://doi.org/10.3103/S1052618815040032

    Article  Google Scholar 

  11. V. A. Ivanov, M. E. Konyzhev, L. I. Kuksenova, V. G. Lapteva, M. S. Alekseeva, I. A. Khrennikova, A. A. Letunov, A. S. Sakharov, T. I. Kamolova, A. A. Dorofeyuk, and S. N. Satunin, Plasma Phys. Rep. 38, 1105 (2012). https://doi.org/10.1134/S1063780X12080144

    Article  ADS  Google Scholar 

  12. V. A. Ivanov, L. I. Kuksenova, V. G. Lapteva, and M. E. Konyzhev, J. Mach. Manuf. Reliab. 37, 278 (2008). https://doi.org/10.3103/S1052618808030126

    Article  Google Scholar 

  13. D. A. Dimitrovich, A. I. Bychkov, and V. A. Ivanov, Prikl. Fiz, No. 2, 35 (2009).

  14. V. A. Ivanov, L. I. Kuksenova, V. G. Lapteva, and M. E. Konyzhev, J. Mach. Manuf. Reliab. 36, 569 (2007). https://doi.org/10.3103/S1052618807060118

    Article  Google Scholar 

  15. M. Textor, C. Sittig, V. Frauchiger, S. Tosatti, and D. M. Brunette, in Titanium in Medicine (Springer, Berlin, 2001), p. 171. https://doi.org/10.1007/978-3-642-56486-4_7

    Book  Google Scholar 

  16. C. Sittig, M. Textor, N. D. Spencer, M. Wieland, and P. H. Vallotton, J. Mater. Sci.: Mater. Med. 10, 35 (1999). https://doi.org/10.1023/a:1008840026907

    Article  Google Scholar 

  17. V. A. Ivanov, M. E. Konyzhev, T. I. Kamolova, and A. A. Dorofeyuk, Plasma Phys. Rep. 47, 603 (2021). https://doi.org/10.1134/S1063780X21060076

    Article  ADS  Google Scholar 

  18. Vacuum Arcs: Theory and Application, Ed. by J. M. Lafferty (Wiley, New York, 1980).

    Google Scholar 

  19. A. Anders, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 50: Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008).

  20. V. A. Ivanov, Kratk. Soobshch. Fiz., No. 6, 33 (1988).

  21. V. A. Ivanov, Preprint 85–1 (Zentralinstitut fur Electronenphysik, Akademie der Wissenshaften der DDR, Berlin, 1985).

    Google Scholar 

  22. V. A. Ivanov, B. Jüttner, and H. Pursch, in Proceedings of the 11th International Symposium on Discharges and Electrical Insulation in Vacuum, Berlin, 1984, Vol. 1, p. 157.

  23. V. A. Ivanov, B. Jüttner, and H. Pursch, IEEE Trans. Plasma Sci. 13, 334 (1985). https://doi.org/10.1109/TPS.1985.4316432

    Article  ADS  Google Scholar 

  24. V. A. Ivanov, M. E. Konyzhev, T. I. Kamolova, and A. A. Dorofeyuk, Plasma Phys. Rep. 47, 603 (2022).

    Article  ADS  Google Scholar 

  25. V. M. Ievlev, S. B. Kushchev, A. N. Latyshev, O. V. Ovchinnikov, L. Yu. Leonova, M. S. Smirnov, A. A. Sinelnikov, A. M. Vozgorkov, and M. A. Ivkova, Kondens. Sredy Mezhfaznye Granitsy 14 (2), 141 (2012).

    Google Scholar 

  26. T. M. Serikov, N. H. Ibraev, O. Ya. Isaikina, and S. V. Savilov, Zh. Neorg. Khim. 66 (1), 107 (2021).

    Google Scholar 

  27. M. A. Botov, A. Yu. Kuznetsov, and A. B. Sobolev, AIP Conf. Proc. 2466, 030008 (2022). https://doi.org/10.1063/5.0088939

Download references

Funding

This research was carried out within the framework of the state assignment “Fundamentals of Plasma and Microwave Technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.A., Konyzhev, M.E., Kamolova, T.I. et al. Lifetime of Cathode Spots on the Surface of Titanium upon Excitation of a Microplasma Discharge. Plasma Phys. Rep. 49, 394–402 (2023). https://doi.org/10.1134/S1063780X22602085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22602085

Keywords:

Navigation