Skip to main content
Log in

On the Issue of Effect of Magnetic Field on Characteristics of Dust Structures in Glow Discharge

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The characteristics are determined of three-dimensional dust structures created in three dust traps formed in glow discharges and compared to each other. The following dust traps turn out to be stable in the applied magnetic field with induction of up to 2 T: the standing stratum, the region of the current channel contraction (inside the special dielectric insert), and the discharge region located in highly inhomogeneous magnetic field. For each of these dust traps, the geometric characteristics of three-dimensional dust structures formed and distinctive features of their rotation dynamics are presented, such as the longitudinal and transverse sizes (with respect to the magnetic induction vector), angular velocities, and their longitudinal gradients. Differences are analyzed in the experimentally obtained characteristics of three-dimensional dust structures formed in glow and RF discharges in the strong magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys.–Usp. 47, 447 (2004).

    Article  Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, and H. Thomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  3. A. M. Ignatov, Plasma Phys. Rep. 31, 46 (2005).

    Article  ADS  Google Scholar 

  4. V. Yu. Karasev, E. S. Dzlieva, and S. I. Pavlov, Laboratory Dusty Plasma in Magnetic Field (Svoe Izdatel’stvo, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  5. V. Yu. Karasev, E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and S. A. Tarasov, Contrib. Plasma Phys. 59, No. 4-5, e201800136 (2019).

  6. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

  7. V. L. Granovskii, Electrical Current in Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  8. P. Kaw, K. Nishikawa, and N. Sato, Phys. Plasmas 9, 387 (2002).

    Article  ADS  Google Scholar 

  9. M. Schwabe, U. Konopka, P. Bandyopadhyay, and G. E. Morfill, Phys. Rev. Lett. 106, 215004 (2011).

  10. E. Thomas, Jr., B. Lynch, U. Konopka, R. L. Merlino, and M. Rosenberg, Phys. Plasmas 22, 030701 (2015).

  11. U. Konopka, D. Samsonov, A. V. Ivlev, J. Goree, V. Steinberg, and G. E. Morfill, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 61, 1890 (2000).

    Google Scholar 

  12. J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009).

  13. A. Melzer, H. Krüger, S. Schütt, and M. Mulsow, Phys. Plasmas 26, 093702 (2019).

  14. N. Sato, AIP Conf. Proc. 649, 66 (2002).

    Article  ADS  Google Scholar 

  15. M. Choudhary, R. Bergert, S. Mitic, and M. H. Thoma, Phys. Plasmas 27, 063701 (2020).

  16. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, EPL 123, 15001 (2018).

    Article  ADS  Google Scholar 

  17. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Plasma Sources Sci. Technol. 28, 085020 (2019).

  18. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Plasma Sources Sci. Technol. 29, 085020 (2020).

  19. E. S. Dzlieva, L. G. D’yachkov, L. A. Novikov, S. I. Pavlov, and V. Yu. Karasev, Molecules 26, 3788 (2021).

    Article  Google Scholar 

  20. A. V. Nedospasov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 036401 (2009).

  21. M. M. Vasiliev, L. G. D’yachkov, S. N. Antipov, R. Huijink, O. F. Petrov, and V. E. Fortov, EPL 93, 15001 (2011).

    Article  ADS  Google Scholar 

  22. A. R. Abdirakhmanov, V. Yu. Karasev, E. S. Dzlieva, S. I. Pavlov, L. A. Novikov, M. K. Dosbolaev, S. K. Kodanova, and T. S. Ramazanov, Teplofiz. Vys. Temp. 59, 657 (2021).

    Google Scholar 

  23. E. S. Dzlieva, V. Yu. Karasev, and S. I. Pavlov, Plasma Phys. Rep. 42, 147 (2016).

    Article  ADS  Google Scholar 

  24. E. S. Dzlieva, M. A. Ermolenko, and V. Yu. Karasev, Plasma Phys. Rep. 38, 540 (2012).

    Article  ADS  Google Scholar 

  25. A. V. Nedospasov, Sov. Phys.–Usp. 11, 174 (1968).

    Article  ADS  Google Scholar 

  26. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984).

    Google Scholar 

  27. V. N. Tsytovich and J. Winter, Phys.–Usp. 41, 815 (1998).

    Article  Google Scholar 

Download references

Funding

Experimental part of the work in Ne was supported by the Russian Science Foundation, grant no. 22-12-00002; in He was supported by the Russian Science Foundation, grant no. 22-72-10004; the theoretical part was supported by the Ministry of Science and Higher Education of the Russian Federation under the State Contract no. 075-01056-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Karasev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, V.Y., Dzlieva, E.S., D’yachkov, L.G. et al. On the Issue of Effect of Magnetic Field on Characteristics of Dust Structures in Glow Discharge. Plasma Phys. Rep. 49, 265–271 (2023). https://doi.org/10.1134/S1063780X22602012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22602012

Keywords:

Navigation