Skip to main content
Log in

Calculating Electron Swarm Parameters in Neon in Strong Electric Fields

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Dependences of the kinetic and transport coefficients of electrons in neon are calculated by the Monte Carlo method in the range of reduced field strengths E/N from 15 to 1500 Td. The calculated dependences are compared with the results obtained by solving the kinetic equation in the Lorentz approximation. It is shown that this approximation is violated in strong electric fields, which leads to noticeable differences in the values of the transport coefficients calculated using both methods. To verify the calculations, a comparison was made with the measurement data available in the literature. It is also shown that the diffusion-drift approximation poorly describes the spatiotemporal evolution of the electron number density in neon in fields greater than ≈500 Td.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

  2. Y. Sakai, H. Tagashira, and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1035 (1977).

    Article  ADS  Google Scholar 

  3. E. I. Bochkov and L. P. Babich, Plasma Phys. Rep. 48, 294 (2022).

    Article  ADS  Google Scholar 

  4. L. L. Alves, K. Bartschat, S. F. Biagi, M. C. Bordage, L. C. Pitchford, C. M. Ferreira, G. J. M. Hagelaar, W. L. Morgan, S. Pancheshnyi, A. V. Phelps, V. Puech, and O. J. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334002 (2013).

  5. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  6. W. P. Allis, Phys. Rev. A: At., Mol., Opt. Phys. 26, 1704 (1982).

    Article  ADS  Google Scholar 

  7. E. I. Bochkov, L. P. Babich, and I. M. Kutsyk, Plasma Phys. Rep. 47, 1027 (2021).

    Article  ADS  Google Scholar 

  8. M. Adibzadeh and C. E. Theodosiou, At. Data Nucl. Data Tables 91, 8 (2005).

    Article  ADS  Google Scholar 

  9. F. Salvat, A. Jablonski, and C. J. Powell, Comput. Phys. Commun. 165, 157 (2005).

    Article  ADS  Google Scholar 

  10. R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, and R. S. Freund, Phys. Rev. A: At., Mol., Opt. Phys. 35, 559 (1987).

    Article  ADS  Google Scholar 

  11. F. J. De Heer, R. H. Jansen, and W. van der Kaay, J. Phys. B: At. Mol. Phys. 12, 979 (1979).

    Article  ADS  Google Scholar 

  12. B. L. Schram, F. J. de Heer, M. J. van der Wiel, and J. Kistemaker, Physica 31, 94 (1965).

    Article  ADS  Google Scholar 

  13. S. F. Biagi Fortran Code, version 7.1. www.lxcat.net/Biagi-v7.1. Cited November 15, 2022.

  14. G. G. Raju, Gaseous Electronics. Tables, Atoms, and Molecules (CRC, New York, 2012).

    Google Scholar 

  15. Y.-K. Kim and M. E. Rudd, Phys. Rev. A: At., Mol., Opt. Phys. 50, 3954 (1994).

    Article  ADS  Google Scholar 

  16. B. R. Yates, K. Keane, and M. A. Khakoo, J. Phys. B: At., Mol. Opt. Phys. 42, 095206 (2009).

  17. S. Tahira and N. Oda, J. Phys. Soc. Jpn. 35, 582 (1973).

    Article  ADS  Google Scholar 

  18. Z. L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, and M. Radmilović-Rađenović, J. Phys. D: Appl. Phys. 42, 194002 (2009).

  19. H. N. Kucukarpaci, H. T. Saelee, and J. Lucas, J. Phys. D: Appl. Phys. 14, 9 (1981).

    Article  ADS  Google Scholar 

  20. S. A. J. Al-Amin and J. Lucas, J. Phys. D: Appl. Phys. 20, 1590 (1987).

    Article  ADS  Google Scholar 

  21. L. M. Chanin and G. D. Rork, Phys. Rev. 132, 2547 (1963).

    Article  ADS  Google Scholar 

  22. A. A. Kruithof and F. M. Penning, Physica 4, 430 (1937).

    Article  ADS  Google Scholar 

  23. B. A. Willis and C. G. Morgan, Br. J. Appl. Phys. 1, 1219 (1968).

    ADS  Google Scholar 

  24. J. Dutton, M. H. Hughes, and B. Tan, J. Phys. B: At. Mol. Phys. 2, 890 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Bochkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkov, E.I. Calculating Electron Swarm Parameters in Neon in Strong Electric Fields. Plasma Phys. Rep. 49, 514–522 (2023). https://doi.org/10.1134/S1063780X22602000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22602000

Keywords:

Navigation