Skip to main content
Log in

Effect of Ionization on Void Formation in an RF Discharge under Microgravity Conditions

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An analysis of the formation of a void in the PK3 setup in dusty plasma with 3.4-μm-diameter melamine–formaldehyde particles—in an RF discharge in argon at a pressure of 12–50 Pa under microgravity conditions at the ISS is presented. The uniform state of the plasma can only be obtained at a voltage close to the discharge extinction voltage. The application of a low-frequency voltage of 20–50 Hz stabilizes the state of the dusty plasma and shifts the void formation threshold towards higher RF voltages. It is shown that the formation of a void is associated with non-local ionization of the plasma at the center of the discharge by fast electrons, which are heated in the near-electrode layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. G. Khrapak, V. I. Molotkov, A. M. Lipaev, D. I. Zhukhovitskii, V. N. Naumkin, V. E. Fortov, O. F. Petrov, H. M. Thomas, S. A. Khrapak, P. Huber, A. V. Ivlev, and G. Morfill, Contrib. Plasma Phys. 56, 253 (2016).

    Article  ADS  Google Scholar 

  2. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  3. A. M. Lipaev, S. A. Khrapak, V. I. Molotkov, G. E. Morfill, V. E. Fortov, A. V. Ivlev, H. M. Thomas, A. G. Khrapak, V. N. Naumkin, A. I. Ivanov, S. E. Tretschev, and G. I. Padalka, Phys. Rev. Lett. 98, 265006 (2007).

  4. V. N. Tsytovich, G. E. Morfill, U. Konopka, and H. Thomas, New J. Phys. 5, 1 (2003).

    Article  MathSciNet  Google Scholar 

  5. V. N. Tsytovich, S. V. Vladimirov, and G. E. Morfill, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 066408 (2004).

  6. V. N. Tsytovich, S. V. Vladimirov, and G. E. Morfill, J. Exp. Theor. Phys. 102, 334 (2006).

    Article  ADS  Google Scholar 

  7. V. N. Tsytovich, S. V. Vladimirov, G. E. Morfill, and J. Goree, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 056609 (2001).

  8. D. Samsonov. G. Morfill, H. Thomas, T. Hagl, H. Rothermel, V. Fortov, A. Lipaev, V. Molotkov, A. Nefedov, O. Petrov, A. Ivanov, and S. Krikalev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 036404 (2003).

  9. V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, J. Exp. Theor. Phys. 92, 86 (2001).

    Article  ADS  Google Scholar 

  10. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Phys. Rep. 45, 285 (2019).

    Article  ADS  Google Scholar 

  11. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 26, 035011 (2017).

  12. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  13. M. R. Akdim and W. J. Goedheer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 015401(R) (2001).

  14. G. Gozadinos, A. V. Ivlev, and J. P. Boeuf, New J. Phys. 5, 32 (2003).

    Article  ADS  Google Scholar 

  15. J. P. Boeuf and L. C. Pitchford, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 51, 1376 (1995).

    Google Scholar 

  16. I. D. Kaganovich and L. D. Tsendin, IEEE Trans. Plasma Sci. 20, 66 (1992).

    Article  ADS  Google Scholar 

  17. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995).

    Article  ADS  Google Scholar 

  18. V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci. 23, 503 (1995).

    Article  ADS  Google Scholar 

  19. W. J. Goedheer and V. Land, Plasma Phys. Control. Fusion 50, 124022 (2008).

  20. Encyclopedia of Low-Temperature Plasma. Introductory Volume II., Ed. by V. E. Fortov (Nauka/Interperiodika, Moscow, 2000), Part II, p. 63 [in Russian].

  21. A. S. Smirnov and K. E. Orlov, Tech. Phys. Lett. 23, 26 (1997).

    Article  ADS  Google Scholar 

  22. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharge (Moscow, Nauka, 1995; CRC Press, Boca Raton, 2019).

  23. V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, IEEE Trans. Plasma Sci. 19, 660 (1991).

    Article  ADS  Google Scholar 

  24. V. N. Tsytovich, Phys.–Usp. 40, 53 (1997).

    Article  Google Scholar 

  25. M. Kretschmer, S. A. Khrapak, S. K. Zhdanov, H. M. Thomas, G. E. Morfill, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, A. I. Ivanov, and M. V. Turin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 056401 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Vasilyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyak, L.M., Vetchinin, S.P. & Polyakov, D.N. Effect of Ionization on Void Formation in an RF Discharge under Microgravity Conditions. Plasma Phys. Rep. 49, 290–295 (2023). https://doi.org/10.1134/S1063780X22601961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601961

Keywords:

Navigation