Skip to main content
Log in

Generalization of Modified SXB Method for Hydrogen to the Case of Isotope Mixture

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A simulator of the kinetics of hydrogen isotopes recycling in plasma for the H-alpha diagnostics of the fuel ratio in a tokamak-reactor is proposed. The simulator represents a generalization of the well-known SXB method developed for determining the density of impurity flux from the vacuum vessel first wall into plasma from intensity of the spectral line of an atom or ion integrated with respect to wavelength within the spectral line width, to the case of an isotope mixture. The simulator allows on to determine the parameters of the fuel ratio for a mixture of deuterium and tritium hydrogen isotopes in real time (e.g., within 100 ms, according to the requirements specified for controlling the parameters of hydrogen isotopes in the ITER demonstration tokamak-reactor). The developed approach allows one to determined the flux density of hydrogen isotopes from the first wall into the plasma based on the results obtained by means of the high-resolution spectroscopy of the Balmer series lines without using the molecular spectra of hydrogen that are difficult to interpret. Calculations carried out for typical conditions of the edge plasma in the tokamak-reactors revealed that the flux density and fuel ratio in a certain part of the operational space of the reactor can be reconstructed with an acceptable accuracy. The role of the simulator for more accurate but more time-consuming interpretation of the measurements using the H-alpha diagnostics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. A. Loarte, B. Lipschultz, A. Kukushkin, G. Matthews, P. Stangeby, N. Asakura, G. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, et al., Nucl. Fusion 47, S203 (2007). https://doi.org/10.1088/0029-5515/47/6/S04

    Article  Google Scholar 

  2. A. J. Donné, A. E. Costley, R. Barnsley, H. Bindslev, R. Boivin, G. Conway, R. Fisher, R. Giannella, H. Hartfuss, M. G. Von Hellermann, E. Hodgson, L. C. Ingesson, K. Itami, D. Johnson, Y. Kawano, et al., Nucl. Fusion 47, S337 (2007). https://doi.org/10.1088/0029-5515/47/6/S07

    Article  Google Scholar 

  3. A. B. Kukushkin, V. S. Neverov, A. G. Alekseev, S. W. Lisgo, and A. S. Kukushkin, Fusion Sci. Technol. 69, 628 (2016). https://doi.org/10.13182/FST15-186

    Article  ADS  Google Scholar 

  4. V. S. Neverov, A. B. Kukushkin, M. F. Stamp, A. G. Alekseev, S. Brezinsek, M. von Hellermann, and JET Contributors, Nucl. Fusion 57, 016031 (2017). https://doi.org/10.1088/0029-5515/57/1/016031

  5. V. S. Neverov, R. I. Khusnutdinov, A. G. Alekseev, M. Carr, M. De Bock, A. B. Kukushkin, J. Lovell, A. Meakins, R. Pitts, A. R. Polevoi, and E. Veshchev, Plasma Phys. Control. Fusion 62, 115014 (2020). https://doi.org/10.1088/1361-6587/abb53b

  6. H. Natsume, S. Kajita, V. S. Neverov, R. I. Khusnutdinov, E. Veshchev, M. De Bock, A. R. Polevoi, H. Tanaka, N. Ohno, H. Ogawa, and S.-I. Kitazawa, Plasma Fusion Res. 16, 2405019 (2021). https://doi.org/10.1585/pfr.16.2405019

  7. S. Kajita, E. Veshchev, R. Barnsley, and M. Walsh, Contrib. Plasma Phys. 56, 837 (2016). https://doi.org/10.1002/ctpp.201500124

    Article  ADS  Google Scholar 

  8. S. Kajita, M.-H. Aumeunier, E. Yatsuka, A. Alekseev, E. Andreenko, A. B. Kukushkin, V. Neverov, M. Kocan, M. Bassan, E. Veshchev, M. De Bock, R. Barnsley, A. S. Kukushkin, R. Reichle, and M. Walsh, Nucl. Fusion 57, 116061 (2017). https://doi.org/10.1088/1741-4326/aa7ef7

  9. D. Reiter, M. Baelmans, and P. Börner, Fusion Sci. Technol. 47, 172 (2005). https://doi.org/10.13182/FST47-172

    Article  ADS  Google Scholar 

  10. A. S. Kukushkin, H. D. Pacher, V. Kotov, G. W. Pacher, and D. Reiter, Fusion Eng. Des. 86, 2865 (2011). https://doi.org/10.1016/j.fusengdes.2011.06.009

    Article  Google Scholar 

  11. S. W. Lisgo, P. Börner, A. Kukushkin, R. A. Pitts, A. Polevoi, and D. Reiter, J. Nucl. Mater. 415, S965 (2011). https://doi.org/10.1016/j.jnucmat.2010.11.061

    Article  ADS  Google Scholar 

  12. M. B. Kadomtsev, V. Kotov, V. S. Lisitsa, and V. A. Shurygin, in Proceedings of the 39th EPS Conference on Plasma Physics and the 16th International Congress on Plasma Physics, Stockholm, 2012, Paper P4.093. http://ocs.ciemat.es/EPSICPP2012PAP/pdf/P4.093.pdf.

  13. M. B. Kadomtsev, V. Kotov, V. S. Lisitsa, V. S. Neverov, and V. A. Shurygin, in Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, 2013, Paper P1.135. http://ocs.ciemat.es/EPS2013PAP/pdf/P1.135.pdf.

  14. V. S. Lisitsa, M. B. Kadomtsev, V. Kotov, V. S. Neverov, and V. A. Shurygin, Atoms 2, 195 (2014). https://doi.org/10.3390/atoms2020195

    Article  ADS  Google Scholar 

  15. A. B. Kukushkin, A. S. Kukushkin, V. S. Lisitsa, V. S. Neverov, A. A. Pshenov, and V. A. Shurygin, Plasma Phys. Control. Fusion 63, 035025 (2021). https://doi.org/10.1088/1361-6587/abd97f

  16. Atomic Data and Analysis Structure (ADAS). https://www.adas.ac.uk/. Cited August 15, 2022.

  17. A. B. Kukushkin, V. S. Neverov, M. B. Kadomtsev, V. Kotov, A. S. Kukushkin, M. G. Levashova, S. W. Lisgo, V. S. Lisitsa, V. A. Shurygin, and A. G. Alekseev, J. Phys.: Conf. Ser. 548, 012012 (2014). https://doi.org/10.1088/1742-6596/548/1/012012

  18. V. S. Neverov, A. B. Kukushkin, S. W. Lisgo, A. S. Kukushkin, and A. G. Alekseev, Plasma Phys. Rep. 41, 103 (2015). https://doi.org/10.1134/S1063780X15020075

    Article  ADS  Google Scholar 

  19. V. S. Neverov, A. B. Kukushkin, U. Kruezi, M. F. Stamp, H. Weisen, and JET Contributors, Nucl. Fusion 59, 046011 (2019). https://doi.org/10.1088/1741-4326/ab0000

  20. B. A. Lomanowski, A. G. Meigs, R. M. Sharples, M. Stamp, C. Guillemaut, and JET Contributors, Nucl. Fusion 55, 123028 (2015). https://doi.org/10.1088/0029-5515/55/12/123028

  21. K. H. Behringer, J. Nucl. Mater. 145–147, 145 (1987). https://doi.org/10.1016/0022-3115(87)90319-9

    Article  ADS  Google Scholar 

  22. A. Pospieszczyk, D. Borodin, S. Brezinsek, A. Huber, A. Kirschner, Ph. Mertens, G. Sergienko, B. Schweer, I. L. Beigman, and L. Vainshtein, J. Phys. B: At., Mol. Opt. Phys. 43, 144017 (2010). https://doi.org/10.1088/0953-4075/43/14/144017

  23. M. O’Mullane, private communication (ITER technical document), December 2016.

  24. P. Mertens, S. Brezinsek, P. T. Greenland, J. D. Hey, A. Pospieszczyk, D. Reiter, U. Samm, B. Schweer, G. Sergienko, and E. Vietzke, Plasma Phys. Control. Fusion 43, A349 (2001). https://doi.org/10.1088/0741-3335/43/12A/327

    Article  ADS  Google Scholar 

  25. R. I. Khusnutdinov and A. B. Kukushkin, Phys. At. Nucl. 82, 1392 (2019). https://doi.org/10.1134/S1063778819100119

    Article  Google Scholar 

  26. R. A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. P. Gunn, T. Hirai, A. S. Kukushkin, E. Kaveeva, M. A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P. C. Stangeby, et al., Nucl. Mater. Energy 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696

  27. V. Kotov, D. Reiter, A. S. Kukushkin, H. D. Pacher, P. Börner, and S. Wiesen, Contrib. Plasma Phys. 46, 635 (2006). https://doi.org/10.1002/ctpp.200610056

    Article  ADS  Google Scholar 

  28. A. A. Pshenov, A. S. Kukushkin, E. D. Marenkov, and S. I. Krasheninnikov, Nucl. Fusion 59, 106025 (2019). https://doi.org/10.1088/1741-4326/ab3144

  29. A. B. Kukushkin, V. S. Neverov, V. S. Lisitsa, V. A. Shurygin, and A. G. Alekseev, Phys. At. Nucl. 83, 1070 (2020). https://doi.org/10.1134/S106377882007008X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.G. Alekseev, K.Yu. Vu-kolov, and V.S. Lisitsa for useful comments and collaboration in research related to “H-alpha and Visible Spectroscopy” diagnostics for ITER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Khusnutdinov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, A.B., Neverov, V.S. & Khusnutdinov, R.I. Generalization of Modified SXB Method for Hydrogen to the Case of Isotope Mixture. Plasma Phys. Rep. 49, 179–193 (2023). https://doi.org/10.1134/S1063780X22601808

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601808

Keywords:

Navigation