Skip to main content
Log in

Instability of Dust Acoustic Waves in a Dusty Plasma with Dust Charge Variations and Two Different Temperatures for Both Electrons and Ions

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dispersion relation and instability of dust acoustic waves (DAWs) in an unmagnetized dusty plasma with two different temperatures for ions, two different temperatures for electrons, and dust charge fluctuations are investigated. Ions and electrons are assumed to be Maxwellian distributed. The orbital limited motion theory (OLM) is used to derive dust charge fluctuations. The conditions for the instability are found to be significantly modified by the effects of two different temperatures of ions (electrons), dust charge fluctuations, density ratio of ions and density ratio of electrons. Furthermore, it is observed that there is only damping rate in such dusty plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  2. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  3. G. S. Selwyn, Jpn. J. Appl. Phys. 32, 3068 (1993).

    Article  ADS  Google Scholar 

  4. G. S. Selwyn, J. E. Heidenreich, and K. L. Haller, Appl. Phys. Lett. 57, 1876 (1990).

    Article  ADS  Google Scholar 

  5. J. E. Daugherty, R. K. Porteous, M. D. Kilgore, and D. B. Graves, J. Appl. Phys. 72, 3934 (1992).

    Article  ADS  Google Scholar 

  6. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  7. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  8. H. Demiray and A. Abdikian, Chaos, Solitons Fractals 121, 50 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  9. H. A. Al-Yousef, B. M. Alotaibi, R. E. Tolba, and W. M. Moslem, Results Phys. 21, 103792 (2021).

  10. E. Eslami and R. Baraz, IEEE Trans. Plasma Sci. 41, 1805 (2013).

    Article  ADS  Google Scholar 

  11. E. Eslami and R. Baraz, AIP Adv. 4, 027108 (2014).

  12. T. S. Gill and S. Bansal, Chaos, Solitons Fractals 147, 110953 (2021).

  13. U. N. Ghosh, S. Nasipuri, and P. Chatterjee, Braz. J. Phys. 52, 153 (2022).

    Article  ADS  Google Scholar 

  14. T. S. Gill and S. Bansal, Phys. Scr. 96, 075605 (2021).

  15. R. B. Kian and M. H. Mahdieh, Phys. Wave Phenom. 30, 370 (2022).

    Article  ADS  Google Scholar 

  16. S. Ghosh, R. Bharuthram, M. Khan, and M. R. Gupta, Phys. Plasmas 11, 3602 (2004).

    Article  ADS  Google Scholar 

  17. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 198 (2005).

    Article  ADS  Google Scholar 

  18. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 33, 289 (2007).

    Article  ADS  Google Scholar 

  19. S. I. Kopnin and S. I. Popel, Plasma Phys. Rep. 34, 471 (2008).

    Article  ADS  Google Scholar 

  20. N. D. Borisov, S. I. Kopnin, T. I. Morozova, and S. I. Popel, Plasma Phys. Rep. 45, 355 (2019).

    Article  ADS  Google Scholar 

  21. Yu. N. Izvekova, Yu. S. Reznichenko, and S. I. Popel, Plasma Phys. Rep. 46, 1205 (2020).

    Article  ADS  Google Scholar 

  22. F. Araghi and D. Dorranian, Plasma Phys. Rep. 42, 155 (2016).

    Article  ADS  Google Scholar 

  23. M. N. Alam, A. R. Seadawy, and D. Baleanu, Alexandria Eng. J. 59, 1505 (2020).

    Google Scholar 

  24. D.-N. Gao, J.-B. Yue, J.-P. Wu, W.-Sh. Duan, and Zh.-Zh. Li, Plasma Phys. Rep. 47, 48 (2021).

    Article  ADS  Google Scholar 

  25. R. Srivastava, H. K. Malik, and D. Singh, J. Theor. Appl. Phys. 14, 11 (2020).

    Article  ADS  Google Scholar 

  26. R. B. Kian and M. H. Mahdieh, Phys. Wave Phenom. 30, 336 (2022).

    Article  ADS  Google Scholar 

  27. E. Eslami and R. Baraz, IEEE Trans. Plasma Sci. 41, 1005 (2013).

    Article  ADS  Google Scholar 

  28. R. B. Kian and M. H. Mahdieh, Plasma Phys. Rep. 48, 1211 (2022).

    Article  ADS  Google Scholar 

  29. B. Xie, K. He, and Z. Huang, Phys. Plasmas 6, 3808 (1999).

    Article  ADS  Google Scholar 

  30. A. Shome and S. Pramanik, Contrib. Plasma Phys. 61, e202100025 (2021).

  31. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  32. X. Zhong, H. Chen, N. Liu, and S. Liu, Pramana 86, 885 (2016).

    Article  ADS  Google Scholar 

  33. A. Varghese, A. C. Saritha, N. T. Willington, M. Michael, S. Sebastian, G. Sreekala, and C. Venugopal, J. Astrophys. Astron. 41, 11 (2020).

    Article  ADS  Google Scholar 

  34. J. E. Allen, Phys. Scr. 45, 497 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Mahdieh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, R.B., Mahdieh, M.H. Instability of Dust Acoustic Waves in a Dusty Plasma with Dust Charge Variations and Two Different Temperatures for Both Electrons and Ions. Plasma Phys. Rep. 49, 920–925 (2023). https://doi.org/10.1134/S1063780X22601729

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601729

Navigation