Skip to main content
Log in

Dynamics of Discharge Development in a Homogeneous DC Field Initiated by a Plasma Filament Created by a Femtosecond Laser Pulse

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Dynamics of a discharge in a constant quasi-homogeneous electric field initiated by a plasma filament created by a femtosecond laser pulse is studied experimentally. The time of development of the initiated discharge (the time delay of discharge onset relative to the laser pulse) is measured as a function of magnitude of the constant electric field in the plasma filament. The obtained experimental dependence is compared with the results of numerical simulations of the discharge in the filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Houard, P. Walch, T. Produit, V. Moreno, B. Mahieu, A. Sunjerga, C. Herkommer, A. Mostajabi, U. Andral, Y.-B. André, M. Lozano, L. Bizet, M. C. Schroeder, G. Schimmel, M. Moret, et al., arXiv:2207.03769 [physics.optics], (2022).https://doi.org/10.48550/arXiv.2207.03769

  2. P. Produit, C. Walch, C. Herkommer, A. Mostajabi, M. Moret, U. Andral, A. Sunjerga, M. Azadifar, Y.‑B. André, B. Mahieu, W. Haas, B. Esmiller, G. Fournier, P. Krotz, T. Metzger, et al., Eur. Phys. J. Appl. Phys. 93, 10504 (2021). https://doi.org/10.1051/epjap/2020200243

    Article  ADS  Google Scholar 

  3. J. Kasparian, R. Ackermann, Y.-B. André, G. Méchain, G. Méjean, B. Prade, P. Rohwetter, E. Salmon, K. Stelmszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. Wöste, and J.-P. Wolf, Opt. Express 16, 5757 (2008). https://doi.org/10.1364/OE.16.005757

    Article  ADS  Google Scholar 

  4. D. Comtois, C. Y. Chien, A. Desparois, F. Génin, G. Jarry, T. W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, et al., Appl. Phys. Lett. 76, 819 (2000).https://doi.org/10.1063/1.125595

    Article  ADS  Google Scholar 

  5. B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, et al., J. Appl. Phys. 88, 610 (2000). https://doi.org/10.1063/1.373710

    Article  ADS  Google Scholar 

  6. H. Pépin, D. Comtois, F. Vidal, C.-Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, B. La Fontaine, F. Martin, F. A. M. Rizk, C. Potvin, P. Couture, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, et al., Phys. Plasmas 8, 2532 (2001).https://doi.org/10.1063/1.1342230

    Article  ADS  Google Scholar 

  7. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 057401 (2001). https://doi.org/10.1103/PHYSREVE.64.057401

  8. M. Rodrigues, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, Opt. Lett. 27, 772 (2002). https://doi.org/10.1364/OL.27.000772

    Article  ADS  Google Scholar 

  9. R. Akermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, Appl. Phys. Lett. 85, 5781 (2004).https://doi.org/10.1063/1.1829165

    Article  ADS  Google Scholar 

  10. R. Ackermann, G. Méchain, G. Méjean, R. Bourayou, M. Rodriguez, K. Stelmaszczyk, J. Kasparian, J. Yu, E. Salmon, S. Tzortzakis, Y.-B. André, J.-F. Bourrillon, L. Tamin, J.-P. Cascelli, C. Campo, et al., Appl. Phys. B: Lasers Opt. 82, 561 (2006). https://doi.org/10.1007/S00340-005-2061-5

    Article  ADS  Google Scholar 

  11. G. Méjean, R. Ackermann, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, K. Rethmeier, W. Kalkner, P. Rohwetter, K. Stelmaszczyk, and L. Wöste, Appl. Phys. Lett. 88, 021101 (2006). https://doi.org/10.1063/1.2162430

  12. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and K. Nemoto, Phys. Plasmas 15, 013107 (2008). https://doi.org/10.1063/1.2830647

  13. Z. Zhang, X. Lu, W.-X. Liang, Z.-Q. Hao, M.‑L. Zhou, Z.-H. Wang, X. Liu, and J. Zhang, Opt. Express 17, 3461 (2009). https://doi.org/10.1364/OE.17.003461

    Article  ADS  Google Scholar 

  14. X. Liu, X. Lu, Z. Zhang, X.-L. Liu, J.-L. Ma, and J. Zhang, Opt. Commun. 284, 5372 (2011). https://doi.org/10.1016/J.OPTCOM.2011.07.058

    Article  ADS  Google Scholar 

  15. B. Forestier, A. Houard, I. Revel, M. Durand, Y. B. André, B. Prade, A. Jarnac, J. Carbonnel, M. Le Nevé, J. C. de Miscault, B. Esmiller, D. Chapuis, and A. Mysyrowicz, AIP Adv. 2, 012151 (2012).https://doi.org/10.1063/1.3690961

  16. A. A. Ionin, S. I. Kudryashov, A. O. Levchenko, L. V. Seleznev, A. V. Shutov, D. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovsky, and V. D. Zvorykin, Appl. Phys. Lett. 100, 104105 (2012).https://doi.org/10.1063/1.3691918

  17. S. B. Leonov, A. A. Firsov, M. A. Shurupov, J. B. Michael, M. N. Shneider, R. B. Miles, and N. A. Popov, Phys. Plasmas 19, 123502 (2012). https://doi.org/10.1063/1.4769261

  18. M. Henriksson, J.-F. Daigle, F. Théberge, M. Châteauneuf, and J. Dubois, Opt. Express 20, 12721 (2012). https://doi.org/10.1364/OE.20.012721

    Article  ADS  Google Scholar 

  19. L. Arantchouk, G. Point, Y. Brelet, B. Prade, J. Carbonnel, Y.-B. André, A. Mysyrowicz, and A. Houard, J. Appl. Phys. 116, 013303 (2014). https://doi.org/10.1063/1.4886582

  20. F. Théberge, J.-F. Daigle, J.-C. Kieffer, F. Vidal, and M. Châteauneuf, Sci. Rep. 7, 40063 (2017). https://doi.org/10.1038/srep40063

    Article  ADS  Google Scholar 

  21. A. Desparois, B. La Fontaine, A. Bondiou-Clergerie, C.-Y. Chien, D. Comtois, T. W. Johnston, J.-C. Kieffer, H. P. Mercure, H. Pepin, F. A. M. Rizk, and F. Vidal, IEEE Trans. Plasma Sci. 28, 1755 (2000). https://doi.org/10.1109/27.901264

    Article  ADS  Google Scholar 

  22. N. L. Aleksandrov, E. M. Bazelian, N. A. Bogatov, M. A. Kiselev, and A. N. Stepanov, Plasma Phys. Rep. 34, 1059 (2008).

    Article  ADS  Google Scholar 

  23. S. Bodrov, N. Aleksandrov, M. Tsarev, A. Murzanev, I. Kochetov, and A. Stepanov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 053101 (2013).https://doi.org/10.1103/PhysRevE.87.053101

  24. T. B. Petrova, H. D. Ladouceur, and A. P. Baronavski, Phys. Plasmas 15, 053501 (2008).https://doi.org/10.1063/1.2907787

  25. A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, Quantum Electron. 31, 623 (2001).

    Article  ADS  Google Scholar 

  26. Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Wiley, New York, 1978).

    MATH  Google Scholar 

  27. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).https://doi.org/10.1103/PhysRevLett.71.1994

    Article  ADS  Google Scholar 

  28. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). https://doi.org/10.1016/j.physrep.2006.12.005

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the World-Class Research Center “Center of Photonics” with funding from the Ministry of Education and Science of the Russian Federation, contract no. 075-15-2022-316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bogatov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatov, N.A., Stepanov, A.N. Dynamics of Discharge Development in a Homogeneous DC Field Initiated by a Plasma Filament Created by a Femtosecond Laser Pulse. Plasma Phys. Rep. 49, 277–283 (2023). https://doi.org/10.1134/S1063780X22601663

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601663

Keywords:

Navigation