Skip to main content
Log in

Microwave Low-Pressure Gas Discharge Sustained by a Standing Surface Wave in the Dipolar Mode

  • OSCILLATIONS AND WAVES IN PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The maintenance of a microwave gas discharge of a standing surface electromagnetic wave (SEW) in the dipolar mode is studied. The standing wave was formed between two flat mirrors that create an open resonator type structure on the surface wave. The measured Q factor of the open resonator is several tens. The electric field structures of a free discharge and a discharge supported by a standing surface wave field are determined. It is shown that resonance on a purely surface wave is excited in this system. With an increase in the field energy between the mirrors by 8–10 dB, the concentration of electrons increases by about 50%. The ratios of the surface wave field energies in the plasma and in the space surrounding the discharge both in the case of a free discharge and during resonance are estimated. The results of experiments and numerical simulations show that the structure of the discharge depends on the excited mode of steady-state SEWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. A. Sommerfeld, Ann. Phys. Chem. 67, 233 (1899). https://doi.org/10.1002/andp.18993030202

    Article  ADS  Google Scholar 

  2. A. W. Trivelpiece, PhD thesis (California Institute of Technology, Pasadena, CA, 1958).

  3. A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959). https://doi.org/10.1063/1.1735056

    Article  ADS  Google Scholar 

  4. K. F. Sergeichev, D. M. Karfidov, S. E. Andreev, Yu. E. Sizov, and V. I. Zhukov, Radiotekh. Elektron. 63, 314 (2018).

    Google Scholar 

  5. S. K. Oruganti, F. Liu, D. Paul, J. Liu., J. Malik, K. Feng, H. Kim, Y. Liang, T. Thundat, and F. Bien, Sci. Rep. 10, 925 (2020). https://doi.org/10.1038/s41598-020-57554-1

    Article  ADS  Google Scholar 

  6. K. F. Sergeichev, D. M. Karfidov, and V. I. Zhukov, Phys. Wave Phenom. 27, 37 (2019). https://doi.org/10.3103/S1541308X19010072

    Article  ADS  Google Scholar 

  7. N. G. Gusein-zade, V. I. Zhukov, D. M. Karfidov, and K. F. Sergeichev, Inzh. Fiz., No. 12, 56 (2017).

  8. M. Moisan and H. Nowakowska, Plasma Sources Sci. Technol. 27, 073001 (2018). https://doi.org/10.1088/1361-6595/aac528

  9. M. Moisan, A. Shivarova, and A. W. Trivelpiece, Plasma Phys. 24, 1331 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Moisan and Z. Zakrzewski, J. Phys. D: Appl. Phys. 24, 1025 (1991).

    Article  ADS  Google Scholar 

  11. C. F. M. Borges, V. T. Airoldi, E. J. Corat, M. Moisan, S. Schelz, and D. Guay, J. Appl. Phys. 80, 6013 (1996). https://doi.org/10.1063/1.363600

    Article  ADS  Google Scholar 

  12. V. Girka, I. Girka, and M. Thumm, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 79: Surface Flute Waves in Plasmas (Springer International Publishing Switzerland, Heidelberg, 2014), p. 129. https://doi.org/10.1007/978-3-319-02027-3

  13. M. M. Abbasi and A. Shahrooz, Microwave Opt. Technol. Lett. 59, 806 (2016). https://doi.org/10.1002/mop.30395

    Article  Google Scholar 

  14. J. Zhao, Z. Sun, Y. Ren, L. Song, S. Wang, W. Liu, Z. Yu, and Y. Wei, J. Phys. D: Appl. Phys. 52, 295202 (2019). https://doi.org/10.1088/1361-6463/ab1b0a

  15. E. N. Istomin, D. M. Karfidov, I. M. Minaev, A. A. Rukhadze, V. P. Tarakanov, K. F. Sergeichev, and A. Yu. Trefilov, Plasma Phys. Rep. 32, 388 (2006). https://doi.org/10.1134/S1063780X06050047

    Article  ADS  Google Scholar 

  16. N. N. Bogachev, N. G. Guseinzade, and V. I. Nefedov, Plasma Phys. Rep. 45, 372 (2019). https://doi.org/10.1134/S1063780X19030024

    Article  ADS  Google Scholar 

  17. J. Rogers and J. Asmussen, IEEE Trans. Plasma Sci. 10, 11 (1982). https://doi.org/10.1109/TPS.1982.4316127

    Article  ADS  Google Scholar 

  18. J. Wolinska-Szatkowska, J. Phys. D: Appl. Phys. 21, 937 (1988). https://doi.org/10.1088/0022-3727/21/6/012

    Article  ADS  Google Scholar 

  19. Z. Rakem, P. Leprince, and J. Marec, Rev. Phys. Appl. 25, 125 (1990). https://doi.org/10.1051/rphysap:01990002501012500

    Article  Google Scholar 

  20. J. Margot-Chaker, M. Moisan, M. Chaker, V. M. M. Glaude, P. Lauque, J. Paraszczak, and G. Sauvé, J. Appl. Phys. 66, 4134 (1989). https://doi.org/10.1063/1.343998

    Article  ADS  Google Scholar 

  21. G. S. Solntsev, P. S. Bulkin, M. V. Mokeev, and L. I. Tsvetkova, Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 6, 36 (1997).

  22. M. Moisan, C. Beaudry, and P. Lepprince, Phys. Lett. A 50, 125 (1974).

    Article  ADS  Google Scholar 

  23. V. I. Zhukov, D. M. Karfidov, and K. F. Sergeichev, Plasma Phys. Rep. 46, 837 (2020). https://doi.org/10.1134/S1063780X20080127

    Article  ADS  Google Scholar 

  24. V. E. Golant, Microwave Plasma Diagnostics (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  25. Z.-S. Chen, L.-F. Ma, and J.-C. Wang, Int. J. Antennas Propag. 2015, 736090 (2015). https://doi.org/10.1155/2015/736090

  26. I. Zhelyazkov and V. Atanassov, Phys. Rep. 255, 79 (1995). https://doi.org/10.1016/0370-1573(94)00092-H

    Article  ADS  Google Scholar 

  27. H. Nowakowska, M. Lackowski, and M. Moisan, IEEE Trans. Plasma Sci. 48, 2106 (2020). https://doi.org/10.1109/TPS.2020.2995475

    Article  ADS  Google Scholar 

  28. A. Böhle, O. Ivanov, A. Kolisko, U. Kortshagen, H. Schlüter, and A. Vikharev, J. Phys. D: Appl. Phys. 29, 369 (1996).

    Article  ADS  Google Scholar 

  29. Y. Ida and K. Hayashi, J. Appl. Phys. 42, 2423 (1971).

    Article  ADS  Google Scholar 

  30. L. D. Gol’dshtein and N. V. Zernov, Electromagnetic Waves and Fields (Sovetskoye Radio, Moscow, 1971) [in Russian], p. 554.

    Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research, project no. 20-32-90162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.I., Karfidov, D.M. Microwave Low-Pressure Gas Discharge Sustained by a Standing Surface Wave in the Dipolar Mode. Plasma Phys. Rep. 49, 219–228 (2023). https://doi.org/10.1134/S1063780X22601651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601651

Keywords:

Navigation