Skip to main content
Log in

Arbitrary Amplitude Dust–Ion Acoustic Solitary Structures in Five Components Unmagnetized Plasma

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The energy integral derived by using Sagdeev pseudo-potential technique has been analyzed to investigate the existence of arbitrary amplitude dust–ion acoustic solitons including double layers and supersolitons in a collisionless five components unmagnetized plasma. The plasma system contains warm adiabatic ions, two distinct populations of electrons at different temperatures, nonthermal hot positron species, and negatively charged static dust grains. The graphical analysis of Sagdeev pseudo-potential shows the existence of positive potential supersolitons (PPSS) along with positive potential double layers (PPDLs) and positive potential solitary waves (PPSWs) whereas in the negative potential side, the system does not support negative potential supersolitons but the existence of negative potential double layers (NPDLs), negative potential solitary waves (NPSWs), the coexistence of both PPSWs and NPSWs, and super-nonlinear periodic waves have been established. To explain the existence of different DIA solitary structures, phase portraits of the dynamical system corresponding to the different DIA solitary structures have been drawn. With the help of phase portraits, the transition of PPSWs just before and just after the formation of PPDL has been discussed. We have seen that the amplitude of PPSW decreases with increasing \({{\beta }_{e}}\), \({{\beta }_{p}}\), and \({{\sigma }_{{sc}}}\) and it increases with increasing \({{\sigma }_{{pc}}}\) whereas there exists a critical value \(n_{{pc}}^{c}\) of \({{n}_{{pc}}}\) such that the amplitude of PPSW decreases (increases) with increasing \({{n}_{{pc}}}\) for \({{n}_{{pc}}} < n_{{pc}}^{c}\) (\(n_{{pc}}^{c} < {{n}_{{pc}}}\)) for a fixed value of the Mach number M in the region of existence of PPSWs. Effects of parameters have been considered on the amplitude of NPSWs and PPSS also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. W. H. Zurek, Astrophys. J. 289, 603 (1985).

    Article  ADS  Google Scholar 

  2. J. C. Higdon, R. E. Lingenfelter, and R. E. Rothschild, Astrophys. J. 698, 350 (2009).

    Article  ADS  Google Scholar 

  3. P. K. Shukla, Phys. Scr. 77, 068201 (2008).

  4. H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).

    Book  MATH  Google Scholar 

  5. N. Jehan, W. Masood, and A. M. Mirza, Phys. Scr. 80, 035506 (2009).

  6. S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).

  7. S. A. El-Tantawy and W. M. Moslem, Phys. Plasmas 18, 112105 (2011).

  8. A. E. Dubinov and D. Y. Kolotkov, IEEE Trans. Plasma Sci. 40, 1429 (2012).

    Article  ADS  Google Scholar 

  9. M. M. Masud, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 348, 99 (2013).

    Article  ADS  Google Scholar 

  10. A. S. Bains, N. S. Saini, and T. S. Gill, Astrophys. Space Sci. 343, 293 (2013).

    Article  ADS  Google Scholar 

  11. A. N. Dev, M. K. Deka, R. K. Kalita, and J. Sarma, Eur. Phys. J. Plus 135, 843 (2020).

    Article  Google Scholar 

  12. B. Boro, A. N. Dev, R. Sarma, B. K. Saikia, and N. C. Adhikary, Plasma Phys. Rep. 47, 557 (2021).

    Article  ADS  Google Scholar 

  13. S. Banik, R. K. Shikha, A. A. Noman, N. A. Chowdhury, A. Mannan, T. S. Roy, and A. A. Mamun, Eur. Phys. J. D 75, 43 (2021).

    Article  ADS  Google Scholar 

  14. A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori, and S. Irani, Phys. Plasmas 19, 082308 (2012).

  15. H.-Y. Wang and K.-B. Zhang, J. Korean Phys. Soc. 64, 1677 (2014).

    Article  ADS  Google Scholar 

  16. H. Y. Wang and K. B. Zhang, Pramana 84, 145 (2015).

    Article  ADS  Google Scholar 

  17. K. Singh, N. Kaur, and N. S. Saini, Phys. Plasmas 24, 063703 (2017).

  18. S. M. Motevalli, T. Mohsenpour, and N. Dashtban, Contrib. Plasma Phys. 59, 111 (2019).

    Article  ADS  Google Scholar 

  19. S. K. Paul, N. A. Chowdhury, A. Mannan, and A. A. Mamun, Pramana 94, 58 (2020).

    Article  ADS  Google Scholar 

  20. S. Thakur, C. Das, and S. Chandra, IEEE Trans. Plasma Sci. 50, 1545 (2022).

    Article  ADS  Google Scholar 

  21. M. N. Haque, A. Mannan, and A. A. Mamun, Contrib. Plasma Phys. 59, e201900049 (2019).

  22. A. A. Noman, N. A. Chowdhury, A. Mannan, and A. A. Mamun, Contrib. Plasma Phys. 59, e201900023 (2019).

  23. M. H. Rahman, N. A. Chowdhury, A. Mannan, and A. A. Mamun, Galaxies 9, 31 (2021).

    Article  ADS  Google Scholar 

  24. B. Boro, A. N. Dev, B. K. Saikia, and N. C. Adhikary, Plasma Phys. Rep. 46, 641 (2020).

    Article  ADS  Google Scholar 

  25. B. Kaur and N. S. Saini, Z. Naturforsch. A: Phys. Sci. 73, 215 (2018).

    Article  ADS  Google Scholar 

  26. E. Saberian, A. Esfandyari-Kalejahi, and M. Afsari-Ghazi, Plasma Phys. Rep. 43, 83 (2017).

    Article  ADS  Google Scholar 

  27. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  28. A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, Tech. Phys. 57, 585 (2012).

    Article  Google Scholar 

  29. N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).

    Article  ADS  Google Scholar 

  30. A. Paul and A. Bandyopadhyay, Astrophys. Space Sci. 361, 172 (2016).

    Article  ADS  Google Scholar 

  31. A. Paul, A. Das, and A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017).

    Article  ADS  Google Scholar 

  32. A. Paul, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 24, 013707 (2017).

  33. A. Paul, A. Bandyopadhyay, and K. P. Das, Plasma Phys. Rep. 45, 466 (2019).

    Article  ADS  Google Scholar 

  34. G. Banerjee and S. Maitra, Phys. Plasmas 23, 123701 (2016).

  35. S. Sardar, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 23, 073703 (2016).

  36. S. Sardar, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 23, 123706 (2016).

  37. S. Sardar, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 24, 063705 (2017).

  38. G. Banerjee and S. Maitra, Am. J. Appl. Math. Comput. 1, 27 (2020).

    Article  Google Scholar 

  39. A. Shome and G. Banerjee, Ric. Mat. (2021). https://doi.org/10.1007/s11587-021-00634-9

  40. R. Maity and B. Sahu, Z, Naturforsch. A: Phys. Sci. 76, 1077 (2021).

    Article  ADS  Google Scholar 

  41. M. Horányi, G. Morfill, and E. Grün, Nature 363, 144 (1993).

    Article  ADS  Google Scholar 

  42. M. Horányi, T. Hartquist, O. Havnes, D. A. Mendis, and G. E. Morfill, Rev. Geophys. 42, RG4002 (2004).

  43. S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, J. Geophys. Res.: Space Phys. 88, 8871 (1983).

    Article  ADS  Google Scholar 

  44. H. Alfvén, Cosmic Plasma (Springer, Dordrecht, 1981).

  45. P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, Geophys. Res. Lett. 21, 1827 (1994).

    Article  ADS  Google Scholar 

  46. R. Ergun, C. W. Carlson, J. P. McFadden, F. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Temerin, I. Roth, L. Muschietti, R. Elphic, R. Starngeway, R. Pfaff, C. A. Cattell, D. Klumpar, et al., Geophys. Res. Lett. 25, 2041 (1998).

    Article  ADS  Google Scholar 

  47. R. E. Ergun, C. W. Carlson, J. P. McFadden, F. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Temerin, R. Elphic, R. Strangeway, R. Pfaff, C. A. Cattell, D. Klumpar, E. Shelley, W. Peterson, et al., Geophys. Res. Lett. 25, 2061 (1998).

    Article  ADS  Google Scholar 

  48. G. T. Delory, R. E. Ergun, C. W. Carlson, L. Muschietti, C. C. Chaston, W. Peria, J. P. McFadden, and R. Strangeway, Geophys. Res. Lett. 25, 2069 (1998).

    Article  ADS  Google Scholar 

  49. R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, and I. Roth, Geophys. Res. Lett. 26, 2629 (1999).

    Article  ADS  Google Scholar 

  50. J. P. McFadden, C. W. Carlson, R. E. Ergun, F. S. Mozer, L. Muschietti, I. Roth, and E. Moebius, J. Geophys. Res. 108, 8018 (2003).

    Article  Google Scholar 

  51. R. A. Cairns, A. A. Mamum, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  52. M. Y. Yu and H. Luo, Phys. Plasmas 15, 024504 (2008).

  53. H. R. Pakzad and M. Tribeche, Astrophys. Space Sci. 334, 45 (2011).

    Article  ADS  Google Scholar 

  54. H. G. Abdelwahed, Astrophys. Space Sci. 341, 491 (2012).

    Article  ADS  Google Scholar 

  55. M. S. Alam, M. M. Masud, and A. A. Mamun, Chin. Phys. B 22, 115202 (2013).

  56. S. S. Ghosh and A. N. Sekar Iyengar, Phys. Plasmas 21, 082104 (2014).

  57. S. V. Singh and G. S. Lakhina, Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015).

    Article  ADS  Google Scholar 

  58. Y. W. Hou, M. X. Chen, M. Y. Yu, and B. Wu, Plasma Phys. Rep. 42, 900 (2016).

    Article  ADS  Google Scholar 

  59. M. A. Hossen and A. A. Mamun, IEEE Trans. Plasma Sci. 44, 643 (2016).

    Article  ADS  Google Scholar 

  60. S. Dalui and A. Bandyopadhyay, Astrophys. Space Sci. 364, 182 (2019).

    Article  ADS  Google Scholar 

  61. K. Nishihare and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).

    Article  ADS  Google Scholar 

  62. R. Bharuthram and P. K. Shukla, Phys. Fluids 29, 3214 (1986).

    Article  ADS  Google Scholar 

  63. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 40, 163 (1988).

    Article  ADS  Google Scholar 

  64. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 41, 341 (1989).

    Article  ADS  Google Scholar 

  65. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 1 (1990).

    Article  ADS  Google Scholar 

  66. S. A. Islam, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 74, 765 (2008).

    Article  ADS  Google Scholar 

  67. S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 19, 072320 (2012).

  68. A. Saha and P. Chatterjee, Astrophys. Space Sci. 350, 631 (2014).

    Article  ADS  Google Scholar 

  69. O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 21, 082304 (2014).

  70. O. R. Rufai, R. Bharuthram, S. Singh, and G. S. Lakhina, Commun. Nonlinear Sci. Numer. Simul. 19, 1338 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  71. C. P. Olivier, S. K. Maharaj, and R. Bharuthram, Phys. Plasmas 22, 082312 (2015).

  72. A. Saha and J. Tamang, Adv. Space Res. 63, 1596 (2019).

    Article  ADS  Google Scholar 

  73. S. Dalui, S. Sardar, and A. Bandyopadhyay, Z. Naturforsch. A: Phys. Sci. 76, 455 (2021).

    Article  ADS  Google Scholar 

  74. S. Guo, L. Mei, and A. Sun, Ann. Phys. 332, 38 (2012).

    Article  ADS  Google Scholar 

  75. O. El-Kalaawy, Eur. Phys. J. Plus 133, 58 (2018).

    Article  Google Scholar 

  76. J. Tamang, in Advanced Computational and Communication Paradigms, Ed. by S. Bhattacharyya, N. Chaki, D. Konar, U. Kr. Chakraborty, and C. T. Singh (Springer, New York, 2018), Vol. 2, p. 375.

  77. W. M. Moslem, R. E. Tolba, and S. Ali, Phys. Scr. 94, 075601 (2019).

  78. H. A. Al-Yousef, B. M. Alotaibi, R. E. Tolba, and W. M. Moslem, Results Phys. 21, 103792 (2021).

  79. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldvik, J. Geophys. Res.: Space Phys. 106, 26111 (2001).

    Article  ADS  Google Scholar 

  80. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldik, Braz. J. Phys. 30, 590 (2000).

    Article  ADS  Google Scholar 

  81. S. Sebastian, G. Sreekala, M. Michael, N. P. Abraham, S. Antony, G. Renuka, and C. Venugopal, Int. J. Sci. Res. 3, 1301 (2014).

    Google Scholar 

  82. S. Sijo, M. Manesh, G. Sreekala, T. W. Neethu, G. Renuka, and C. Venugopal, Phys. Plasmas 22, 123704 (2015).

  83. M. Michael, S. Gopinathan, S. Sebastian, N. T. Willington, A. Varghese, R. Gangadharan, and C. Venugopal, J. Appl. Math. Phys. 3, 1431 (2015).

    Article  Google Scholar 

  84. N. T. Willington, A. Varghese, A. C. Saritha, N. S. Philip, and C. Venugopal, Adv. Space Res. 68, 4292 (2021).

    Article  ADS  Google Scholar 

  85. R. Kohli, N. S. Saini, and T. S. Gill, Astrophys. Space Sci. 363, 193 (2018).

    Article  ADS  Google Scholar 

  86. P. Halder, A. Bandyopadhyay, S. Dalui, and S. Sardar, Z. Naturforsch. A: Phys. Sci. 77, 659 (2022).

    Article  ADS  Google Scholar 

  87. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  88. S. I. Popel and M. Y. Yu, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 50, 3060 (1994).

    Google Scholar 

  89. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  90. S. I. Popel, V. N. Tsytovich, and M. Y. Yu, Astrophys. Space Sci. 256, 107 (1997).

    Article  ADS  Google Scholar 

  91. S. I. Popel, A. P. Golub’, T. V. Losseva, R. Bingham, and S. Benkadda, Phys. Plasmas 8, 1497 (2001).

    Article  ADS  Google Scholar 

  92. S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 056402 (2003).

  93. A. Das, A. Bandyopadhyay, and K. Das, J. Plasma Phys. 78, 149 (2012).

    Article  ADS  Google Scholar 

  94. J.-X. Ma and M. Y. Yu, Phys. Plasmas 1, 3520 (1994).

    Article  ADS  Google Scholar 

  95. S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Lett. A 274, 162 (2000).

    Article  ADS  Google Scholar 

  96. J. Vranješ, B. P. Pandey, and S. Poedts, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 066404 (2001).

  97. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  98. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  99. E. F. El-Shamy, Chaos, Solitons Fractals 25, 665 (2005).

    Article  ADS  Google Scholar 

  100. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  101. H. Alinejad, Astrophys. Space Sci. 331, 611 (2011).

    Article  ADS  Google Scholar 

  102. H. Alinejad, M. Tribeche, and M. A. Mohammadi, Phys. Lett. A 375, 4183 (2011).

    Article  ADS  Google Scholar 

  103. S. A. Elwakil, M. A. Zahran, E. K. El-Shewy, and A. E. Mowafy, Adv. Space Res. 48, 1067 (2011).

    Article  ADS  Google Scholar 

  104. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  105. M. Kamran, F. Sattar, M. Khan, R. Khan, and M. Ikram, Results Phys. 21, 103808 (2021).

  106. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 46, 1089 (2020).

    Article  ADS  Google Scholar 

  107. A. Abdikian and M. Eghbali, Indian J. Phys. 97, 7 (2022).

    Article  ADS  Google Scholar 

  108. R. A. Cairns, R. Bingham, R. O. Dendy, C. M. C. Nairn, P. K. Shukla, and A. A. Mamun, J. Phys. IV 5 (C6), 43 (1995).

    Google Scholar 

  109. R. A. Cairns, A. A. Mamun, R. Bingham, and P. K. Shukla, Phys. Scr. 63, 80 (1996).

    Article  Google Scholar 

  110. A. A. Mamun, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 1852 (1997).

    Google Scholar 

  111. C. A. Mendoza-Briceño, S. M. Russel, and A. A. Mamun, Planet. Space Sci. 48, 599 (2000).

    Article  ADS  Google Scholar 

  112. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

  113. A. A. Mamun and P. K. Shukla, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 037401 (2009).

  114. F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 102312 (2010).

  115. F. Verheest, Phys. Plasmas 18, 083701 (2011).

  116. M. Tribeche, R. Amour, and P. K. Shukla, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 037401 (2012).

  117. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 043107 (2013).

  118. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 082309 (2013).

  119. R. K. Shikha, M. M. Orani, and A. A. Mamun, Results Phys. 27, 104507 (2021).

  120. M. Khalid, M. Khan, A. Rahman, and F. Hadi, Indian J. Phys. 96, 1783 (2022).

    Article  ADS  Google Scholar 

  121. A. E. Dubinov and D. Y. Kolotkov, Plasma Phys. Rep. 38, 909 (2012).

    Article  ADS  Google Scholar 

  122. A. E. Dubinov and D. Y. Kolotkov, Rev. Mod. Plasma Phys. 2, 2 (2018).

    Article  ADS  Google Scholar 

  123. A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, Plasma Phys. Rep. 38, 833 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere thanks to the editor and reviewers for their valuable comments that improved the manuscript’s version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sardar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, P., Bandyopadhyay, A. & Sardar, S. Arbitrary Amplitude Dust–Ion Acoustic Solitary Structures in Five Components Unmagnetized Plasma. Plasma Phys. Rep. 49, 467–483 (2023). https://doi.org/10.1134/S1063780X22601225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601225

Keywords:

Navigation