Skip to main content
Log in

The Source of Medical Isotopes and Neutrons Based on Laser-Accelerated Ions

  • LASER PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Two methods of laser acceleration of protons/deuterons for initiation of nuclear reactions in the so-called pitcher-catcher scheme aimed at production of medical isotopes and obtaining short neutron pulses are studied using the combined particle-in-cell (PIC) and Monte Carlo (GEANT4) numerical simulation. It is demonstrated that the pulse repetition frequency on the order of 100 Hz is required for obtaining a medical dose of the radionuclids used in the positron-emission tomography (PET) in the case of ion acceleration from a thin foil most efficient in the forward direction by means of a femtosecond laser pulse with energy of several joules. In the case of ion acceleration from a low-density target most efficient in the transverse (radial) direction, lasers pulses of substantially higher energy and picosecond pulse duration have to be used, which allows one to increase the yield of radionuclids per unit deposited energy. In the process, the pulse repetition frequency must be at the level of 1–10 Hz. Laser generation of neutrons by means of reactions initiated by accelerated ions obtained using thin foils or targets of lower density is simulated, and the possibility of obtaining 108 neutrons per laser pulse using 3-J laser pulses is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. N. Dmitriev and N.G. Zaitseva, Fiz. Elem. Chastits At. Yadra 27, 977 (1996).

    Google Scholar 

  2. S. M. Qaim, Nucl. Med. Biol. 44, 31 (2017).

    Article  Google Scholar 

  3. T. Ditmire, J. Zweiback, V. P. Yanovsky, E. Cowan, G. Hays, and K. B. Wharton, Nature 398, 489 (1999).

    Article  ADS  Google Scholar 

  4. V. Yu. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokonnikov, J. Exp. Theor. Phys. 88, 1137 (1999).

    Article  ADS  Google Scholar 

  5. K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, and V. Yu. Bychenkov, Appl. Phys. Lett. 78, 595 (2001).

    Article  ADS  Google Scholar 

  6. S. Fritzler, V. Malka, G. Grillon, J. P. Rousseau, F. Burgy, E. Lefebvre, E. d’Humières, P. McKenna, and K. W. D. Ledingham, Appl. Phys. Lett. 83, 3039 (2003).

    Article  ADS  Google Scholar 

  7. V. Yu. Bychenkov and A. V. Brantov, Eur. Phys. J. Spec. Top. 224, 2621 (2015).

    Article  Google Scholar 

  8. E. Amato, A. Italiano, D. Margarone, B. Pagano, S. Baldari, and G. Korn, Nucl. Instr. Meth. Phys. Res., Sect. A 811, 1 (2016).

    Google Scholar 

  9. L. Willingale, G. M. Petrov, A. Maksimchuk, J. Davis, R. R. Freeman, A. S. Joglekar, T. Matsuoka, C. D. Murphy, V. M. Ovchinnikov, A. G. R. Thomas, L. Van Woerkom, and K. Krushelnick, Phys. Plasmas 18, 083106 (2011).

  10. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, et al., Phys. Rev. Lett. 110, 044802 (2013).

  11. K. W. D. Ledingham, I. Spencer, T. McCanny, R. P. Singhal, M. I. K. Santala, E. Clark, I. Watts, F. N. Beg, M. Zepf, K. Krushelnick, M. Tatarakis, A. E. Dangor, P. A. Norreys, R. Allott, D. Neely, et al., Phys. Rev. Lett. 84, 899 (2000).

    Article  ADS  Google Scholar 

  12. K. W. D. Ledingham, P. McKenna, and P. P. Singhal, Science 300, 1107 (2003).

    Article  ADS  Google Scholar 

  13. M. G. Lobok, A. V. Brantov, and V. Yu. Bychenkov, Plasma Phys. Control. Fusion 64, 054002 (2022).

  14. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

  15. L. A. Gizzi, E. Boella, L. Labate, F. Baffigi, P. J. Bilbao, F. Brandi, G. Cristoforetti, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, D. Palla, and P. Tomassini, Sci. Rep. 11, 13728 (2021).

    Article  ADS  Google Scholar 

  16. J. H. Bin, M. Yeung, Z. Gong, H. Y. Wang, C. Kreuzer, M. L. Zhou, M. J. V. Streeter, P. S. Foster, S. Cousens, B. Dromey, J. Meyer-Ter-Vehn, M. Zepf, and J. Schreiber, Phys. Rev. Lett. 120, 074801 (2018).

  17. R. A. Simpson, G. G. Scott, D. Mariscal, D. Rusby, P. M. King, E. Grace, A. Aghedo, I. Pagano, M. Sinclair, C. Armstrong, M. J.-E. Manuel, A. Haid, K. Flippo, L. Winslow, M. Gatu-Johnson, et al., Phys. Plasmas 28, 013108 (2021).

  18. A. Yogo, K. Mima, N. Iwata, S. Tosaki, A. Morace, Y. Arikawa, S. Fujioka, T. Johzaki, Y. Sentoku, H. Nishimura, A. Sagisaka, K. Matsuo, N. Kamitsukasa, S. Kojima, H. Nagatomo, et al., Sci. Rep. 7, 42451 (2017).

    Article  ADS  Google Scholar 

  19. L. Robson, P. T. Simpson, R. J. Clarke, K. W. D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlstrom, M. Zepf, and P. McKenna, Nature Phys. 3, 58 (2007).

    Article  ADS  Google Scholar 

  20. D. V. Romanov, V. Yu. Bychenkov, W. Rozmus, C. E. Capjack, and R. Fedosejevs, Phys. Rev. Lett. 93, 215004 (2004).

  21. A. V. Brantov, V. T. Tikhonchuk, O. Klimo, D. V. Romanov, S. Ter-Avetisyan, M. Schnürer, T. Sokollik, and P. V. Nickles, Phys. Plasmas 13, 122705 (2006).

  22. A. Brantov, V. Yu. Bychenkov, D. V. Romanov, F. Dollar, A. Maksimchuk, and K. Krushelnick, Contrib. Plasma Phys. 53, 161 (2013).

    Article  ADS  Google Scholar 

  23. T. Morita, T. Zh. Esirkepov, S. V. Bulanov, J. Koga, and M. Yamagiwa, Phys. Rev. Lett. 100, 145001 (2008).

  24. A. V. Brantov, E. A. Govras, V. Yu. Bychenkov, and W. Rozmus, Phys. Rev. Spec. Top.–Accel. Beams 18, 021301 (2015).

  25. C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004).

    Article  ADS  Google Scholar 

  26. C. G. R. Geddes, C. S. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature 431, 538 (2004).

    Article  ADS  Google Scholar 

  27. P. Piot, C. Behrens, C. Gerth, M. Dohlus, F. Lemery, D. Mihalcea, P. Stoltz, and M. Vogt, Phys. Rev. Lett. 108, 034801 (2012).

  28. G. Xia, D. Angal-Kalinin, J. Clarke, J. Smith, E. Cormier-Michele, J. Jones, P. H. Williams, J. W. Mckenzie, B. L. Militsyn, K. Hanahoe, O. Mete, A. Aimidula, and C. P. Welsch, Nucl. Instrum. Methods Phys. Res., Sect. A 740, 165 (2014).

    Google Scholar 

  29. C. D. Decker, W. B. Mori, R. C. Tzeng, and T. Katsouleas, Phys. Plasmas 3, 2047 (1996).

    Article  ADS  Google Scholar 

  30. A. Pukhov, Z.-M. Sheng, and J. Meyerter-Vehn, Phys. Plasmas 6, 2847 (1999).

    Article  ADS  Google Scholar 

  31. D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. E. Masson-Laborde, X. Davoine, N. Blanchot, J. L. Dubois, X. Vaisseau, E. d’Humières, L. Gremillet, A. Duval, Ch. Reverdin, B. Rosse, G. Boutoux, et al., Matter Radiat. Extremes 6, 056901 (2021).

  32. GEOTAR Medical Reference Book, Ftordesoxyglucose, 18 F. https://www.lsgeotar.ru/ftordezoxigliukoza-18f-17067.html. Cited June 25, 2022.

  33. S. Iguchi, T. Moriguchi, M. Yamazaki, Y. Hori, K. Koshino, K. Toyoda, J. Teuho, S. Shimochi, Y. Terakawa, T. Fukuda, J. C. Takahashi, J. Nakagawara, S. Kanaya, and H. Iida, EJNMMI Phys. 5, 37 (2018).

    Article  Google Scholar 

  34. M. A. Seltzer, S. A. Jahan, R. Sparks, D. B. Stout, N. Satyamurthy, M. Dahlbom, M. E. Phelps, and J. R. Barrio, J. Nucl. Med. 45, 1233 (2004).

    Google Scholar 

  35. K. Flippo, T. Bartal, F. Beg, S. Chawla, J. Cobble, S. Gaillard, D. Hey, A. MacKinnon, A. MacPhee, P. Nilson, D. Offermann, S. Le Pape, and M. J. Schmitt, J. Phys.: Conf. Ser. 244, 022033 (2010).

  36. A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J. P. Jadaud, J. P. LeBreton, C. Reverdin, B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel, and J. L. Miquel, High Energy Density Phys. 17, 2 (2015).

    Article  ADS  Google Scholar 

  37. D. Mariscal, T. Ma, S. C. Wilks, A. J. Kemp, G. J. Williams, P. Michel, H. Chen, P. K. Patel, B. A. Remington, M. Bowers, L. Pelz, M. R. Hermann, W. Hsing, D. Martinez, R. Sigurdsson, et al., Phys. Plasmas 26, 043110 (2019).

  38. K. Mima, A. Yogo, S. R. Mirfayzi, Z. Lan, Y. Arikawa, Y. Abe, and H. Nishimura, Appl. Opt. 61, 2398 (2022).

    Article  ADS  Google Scholar 

  39. M. Zimmer, S. Scheuren, A. Kleinschmidt, N. Mitura, A. Tebartz, G. Schaumann, T. Abel, T. Ebert, M. Hesse, S. Zähter, S. C. Vogel, O. Merle, R.-J. Ahlers, S. D. Pinto, M. Peschke, et al., Nature Commun. 13, 1173 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education and Science of the Russian Federation, project no. 075-15-2021-1361.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Brantov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantov, A.V., Bochkarev, S.G., Vais, O.E. et al. The Source of Medical Isotopes and Neutrons Based on Laser-Accelerated Ions. Plasma Phys. Rep. 48, 1142–1155 (2022). https://doi.org/10.1134/S1063780X22601134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601134

Keywords:

Navigation