Skip to main content
Log in

Transverse Perturbations on Dust Acoustic Solitary Waves with Vortex-Like Ion Distribution in Two-Dimensional Cylindrical Geometry

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Nonlinear dust acoustic solitary waves (DASWs) in an unmagnetized dusty plasma with a negatively charged dust fluid are studied in bounded two-dimensional (2D) cylindrical geometry. The dusty plasma was assumed to have electrons with Boltzmann distribution and ions with vortex-like distribution. Transverse perturbation was observed in such dusty plasma. By using the reductive perturbation method along with new space-time stretched coordinates, modified Korteweg–de Vries (K–dV) equation was derived for cylindrical geometry. Particularly, exact solution for the modified K–dV equation in 2D cylindrical geometry was obtained. The solution was investigated for different physical parameters of the plasma. It has been found that the trapped ions have significant effect on the properties of nonlinear waves (small but finite amplitude and width) in cylindrical geometry. The results also show that only compressive solitary waves can be formed in this system. According to the results, the properties of the DASWs in 2D cylindrical geometry differ from 1D cylindrical geometry. Furthermore, unlike the planar modified K–dV equation, in cylindrical modified K–dV equation, solitary structures are slightly deformed in time. The results of present investigation may help to understand the nature of DA solitary structures where dust along with non-Maxwellian ions exists. Such structures can be found in different regions of space and astrophysics mediums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. P. K. Shukla and L. Stenflo, Astrophys. Space Sci. 190, 23 (1992).

    Article  ADS  Google Scholar 

  2. A. A. Mamun and P. K. Shukla, J. Plasma Phys. 77, 437 (2011).

    Article  ADS  Google Scholar 

  3. N. D’Angelo, J. Phys. D: Appl. Phys. 28, 1009 (1995).

    Article  ADS  Google Scholar 

  4. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  5. M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996).

    Article  ADS  Google Scholar 

  6. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  7. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  8. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  9. F. Araghi and D. Dorranian, Plasma Phys. Rep. 42, 155 (2016).

    Article  ADS  Google Scholar 

  10. S. Jahan, A. Mannan, N. A. Chowdhury, and A. A. Mamun, Plasma Phys. Rep. 46, 90 (2020).

    Article  ADS  Google Scholar 

  11. D.-N. Gao and J.-P. Wu, Eur. Phys. J.: Spec. Top. 230, 3359 (2021).

    ADS  Google Scholar 

  12. K. Alam, A. R. Chowdhury, and S. N. Paul, Int. J. Theor. Phys. 38, 757 (1999).

    Article  Google Scholar 

  13. R. K. Shikha, N. A. Chowdhury, A. Mannan, and A. A. Mamun, Eur. Phys. J. D 73, 177 (2019).

    Article  ADS  Google Scholar 

  14. A. Varghese, A. C. Saritha, N. T. Willington, M. Michael, S. Sebastian, G. Sreekala, and C. Venugopal, J. Astrophys. Astron. 41, 11 (2020).

    Article  ADS  Google Scholar 

  15. J. R. Asbridge, S. J. Bame, and I. B. Strong, J. Geophys. Res. 73, 5777 (1968).

    Article  ADS  Google Scholar 

  16. R. Lundin, A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. M. Dubinin, S.W. Barabash, I. Liede, and H. Koskinen, Nature 341, 609 (1989).

    Article  ADS  Google Scholar 

  17. R. A. Cairns, A. A. Mamum, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  18. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  19. H. Schamel, J. Plasma Phys. 13, 139 (1975).

    Article  ADS  Google Scholar 

  20. H. Schamel, J. Plasma Phys. 9, 377 (1973).

    Article  ADS  Google Scholar 

  21. A. P. Misra, Appl. Math. Comput. 256, 368 (2015).

    MathSciNet  Google Scholar 

  22. N. C. Adhikary, M. K. Deka, A. N. Dev, and J. Sarmah, Phys. Plasmas 21, 083703 (2014).

  23. J.-H. Chen and W.-S. Duan, Phys. Plasmas 14, 083702 (2007).

  24. E. Eslami and R. Baraz, IEEE Trans. Plasma Sci. 41, 1805 (2013).

    Article  ADS  Google Scholar 

  25. S. K. El-Labany and E. F. El-Shamy, Phys. Plasmas 12, 042301 (2005).

  26. S. K. El-Labany, E. F. El-Shamy, and S. A. El-Warraki, Astrophys. Space Sci. 315, 287 (2008).

    Article  ADS  Google Scholar 

  27. O. Rahman and A. A. Mamun, Phys. Plasmas 18, 083703 (2011).

  28. A. A. Mamun, B. Eliasson, and P. K. Shukla, Phys. Lett. A 332, 412 (2004).

    Article  ADS  Google Scholar 

  29. R. J. Franz, P. M. Kintner, and J. S. Pickett, Geophys. Res. Lett. 25, 1277 (1998).

    Article  ADS  Google Scholar 

  30. D. K Ghosh, P. Chatterjee, and B. Das, Indian J. Phys. 86, 829 (2012).

    Article  ADS  Google Scholar 

  31. A. M. Mirza, S. Mahmood, N. Jehan, and N. Ali, Phys. Scr. 75, 755 (2007).

    Article  ADS  Google Scholar 

  32. T. S. Gill and S. Bansal, Chaos, Solitons Fractals 147, 110953 (2021).

  33. S. Reyad, M. M. Selim, A. EL-Depsy, and S. K. El-Labany, Phys. Plasmas 25, 083701 (2018).

  34. S. Khan, Ata-ur-Rahman, S. Ali, M. Khalid, N. A. D. Khattak, and A. Zeb, Contrib. Plasma Phys. 56, 927 (2016).

    Article  ADS  Google Scholar 

  35. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 2610 (1996).

    Article  ADS  Google Scholar 

  36. A. A. Mamun, J. Plasma Phys. 59, 575 (1998).

    Article  ADS  Google Scholar 

  37. A. A. Mamun and P. K. Shukla, Phys. Lett. A 374, 472 (2010).

    Article  ADS  Google Scholar 

  38. D. A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002).

    Article  ADS  Google Scholar 

  39. S. K. El-Labany, W. M. Moslem, and F. M. Safy, Phys. Plasmas 13, 082903 (2006).

  40. B. Tian and Y. T. Gao, Phys. Plasmas 12, 070703 (2005).

  41. G. S. Lakhina, A. P. Kakad, S. V. Singh, and F. Verheest, Phys. Plasmas 15, 062903 (2008).

  42. G. S. Lakhina, S. V. Singh, A. P. Kakad, F. Verheest, and R. Bharuthram, Nonlinear Processes Geophys. 15, 903 (2008).

    Article  ADS  Google Scholar 

  43. M. Horanyi and D. A. Mendis, J. Geophys. Res.: Space Phys. 91, 355 (1986).

    Article  ADS  Google Scholar 

  44. A. Barkan, N. D’Angelo and, R. L. Marlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  45. H. Schamel and S. Bujarbarua, Phys. Fluids 23, 2498 (1980).

    Article  ADS  Google Scholar 

  46. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  47. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Mahdieh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, R.B., Mahdieh, M.H. Transverse Perturbations on Dust Acoustic Solitary Waves with Vortex-Like Ion Distribution in Two-Dimensional Cylindrical Geometry. Plasma Phys. Rep. 49, 484–490 (2023). https://doi.org/10.1134/S1063780X22600864

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600864

Keywords:

Navigation