Skip to main content
Log in

Analysis of Physical and Engineering Capabilities for the Implementation of the Reflectometry Diagnostics at T-15MD Installation

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Reflectometry is considered one of the promising diagnostics for measuring plasma parameters at fusion devices now. This diagnostic has a good compatibility with high neutron fluxes, it is tolerant to mechanical and thermal loads during the plasma regime and has a low sensitivity to dust. Reflectometry is widely used at existing installations to measure the electron density profile and the parameters of electron density fluctuations. In this paper, an analysis is made of the capabilities of this diagnostics at the recently put into operation T-15MD tokamak from the viewpoint of its physical ability to perform measurements, the required parameters of reflectometers, and its technical implementability, taking into account the today state of microwave technology and the experience of operating similar diagnostics in Russia and worldwide. In the development of the diagnostics, it is proposed to widely use the accrued experience collected during the development of the “ITER Reflectometry from the High Magnetic Field Side” diagnostics. The enumerated approaches used can also be applied to the development of reflectometers at other plasma installations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  2. S. J. Zweben and R. J. Taylor, Nucl. Fusion 21, 193 (1981).

    Article  ADS  Google Scholar 

  3. S. F. Paul and R. J. Fonck, Rev. Sci. Instrum. 61, 3496 (1990).

    Article  ADS  Google Scholar 

  4. A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, et al., Nucl. Fusion 57, 072004 (2017).

  5. A. E. Costley, P. Cripwell, R. Pretince, and A. C. C. Sips, Rev. Sci. Instrum. 61, 2823 (1990).

    Article  ADS  Google Scholar 

  6. A. Silva, M. E. Manso, L. Cupido, M. Albrecht, F. Serra, P. Varela, J. Santos, S. Vergamota, F. Eusébio, J. Fernandes, T. Grossmann, A. Kallenbach, B. Kurzan, C. Loureiro, L. Meneses, et al., Rev. Sci. Instrum. 67, 4138 (1996).

    Article  ADS  Google Scholar 

  7. L. Zeng, G. Wang, E. J. Doyle, T. L. Rhodes, W. A. Peebles, and Q. Peng, Nucl. Fusion 46, S677 (2006).

    Article  ADS  Google Scholar 

  8. L. Meneses, L. Cupido, A. Sirinelli, M. E. Manso, and JET EFDA Contributors, Rev. Sci. Instrum. 79, 10F108 (2008).

  9. F. Clairet, C. Bottereau, J. M. Chareau, and R. Sabot, Rev. Sci. Instrum. 74, 1481 (2003).

    Article  ADS  Google Scholar 

  10. D. A. Shelukhin, V. A. Vershkov, G. F. Subbotin, D. V. Sarychev, A. A. Petrov, V. G. Petrov, M. M. Sokolov, and G. B. Igonkina, Rev. Sci. Instrum. 89, 094708 (2018). https://doi.org/10.1063/1.5039151

  11. F. Simonet, Rev. Sci. Instrum. 56, 664 (1985).

    Article  ADS  Google Scholar 

  12. A. A. Petrov and V. G. Petrov, Rev. Sci. Instrum. 74, 1465 (2003).

    Article  ADS  Google Scholar 

  13. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Book  Google Scholar 

  14. E. Mazzucato, Phys. Fluids B 4, 3460 (1992).

    Article  ADS  Google Scholar 

  15. E. V. Appleton, J. Inst. Electr. Eng. (London) 71, 652 (1932).

    Google Scholar 

  16. E. A. Azizov, V. A. Belyakov, O. G. Filatov, E. P. Velikhov, and T-15MD Team, in Proceedings of the 24th IAEA Fusion Energy Conference, Daejon, 2010, Paper FTP/P6-01.

  17. V. M. Leonov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 39 (3), 73 (2016).

    Google Scholar 

  18. D. A. Kislov for the T-10 team, Nucl. Fusion 47, S590 (2007).

    Article  Google Scholar 

  19. V. Nikolaeva, L. Guimarais, P. Manz, D. Carralero, M. E. Manso, U. Stroth, C. Silva, G. D. Conway, E. Seliunin, J. Vicente, D. Brida, D. Aguiam, J. Santos, A. Silva, and ASDEX Upgrade team and MST1 team, Plasma Phys. Control. Fusion 60, 055009 (2018). https://doi.org/10.1088/1361-6587/aab4c5

  20. State Standard 22000-75*. Copper and Brass Rectangular Waveguide Pipes. Specifications.

  21. K. Klimov, A. Godin, and V. Perfil’ev, Electrodynamic Analysis of Inhomogeneous Media within Time Domain (LAMBERT Academic Publ., Moscow, 2012) [in Russian].

    Google Scholar 

  22. R. R. Mett, J. W. Sidabras, J. R. Anderson, and J. S. Hyde, Rev. Sci. Instrum. 82, 074704 (2011). https://doi.org/10.1063/1.3607432

  23. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Electromagnetic Waves) (Institution of Engineering and Technology, London, 1998).

  24. J. L. Doane, IEEE Trans. Microwave Theory Tech. 32, 1362 (1984).

    Article  ADS  Google Scholar 

  25. A. Novokshenov, A. Nemov, D. Shelukhin, V. Lukyanov, A. Gorbunov, and V. Vershkov, Fusion Eng. Des. 168, 112406 (2021). https://doi.org/10.1016/j.fusengdes.2122.112506

  26. V. I. Belousov, V. A. Vershkov, G. G. Denisov, M. A. Khozin, and D. A. Shelukhin, Tech. Phys. Lett. 43, 1037 (2017).

    Article  ADS  Google Scholar 

  27. T. Tokuzawa, A. Ejiri, and K. Kawahata, Rev. Sci. Instrum. 81, 10D906 (2010). https://doi.org/10.1063/1.3478747

  28. S. Soldatov, A. Krämer-Flecken, and O. Zorenko, Rev. Sci. Instrum. 82, 033513 (2011). https://doi.org/10.1063/1.3567779

  29. R. Sabot, C. Bottereau, J.-M. Chareau, F. Clairet, and M. Paume, Rev. Sci. Instrum. 75, 2656 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

This work was completed under the Federal project “Development of Technologies for Nuclear Fusion and Innovative Plasma Technologies” (order no. 2996 of National Research Centre Kurchatov Institute from December 31, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shelukhin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelukhin, D.A., Subbotin, G.F., Vershkov, V.A. et al. Analysis of Physical and Engineering Capabilities for the Implementation of the Reflectometry Diagnostics at T-15MD Installation. Plasma Phys. Rep. 48, 721–739 (2022). https://doi.org/10.1134/S1063780X22600402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600402

Keywords:

Navigation