Skip to main content
Log in

Detecting the Fine Structure of Ionization Waves of Positive Streamers

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

New data on the fine structure of the ionization wave was obtained under conditions of free and surface streamer discharges in air at moderate pressures (30–150 Torr). Using high-speed photography, it was shown that the streamer head consists of a bright main ionization wave and a less bright glow of the main wave precursor, the distance between which depends on the streamer propagation conditions, and that the shape of the wave precursor is close to the shape of the main wave. Differences in the spectral composition of the main ionization wave and its precursor are determined. The facts found should be used to make additions to the model of the cathode-directed streamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. N. Agaev, G. M. Sadykh-zade, and K. I. Efendiev, High Temp. 30, 674 (1992).

    Google Scholar 

  2. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  3. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Nauka, Moscow, 1989; Springer-Verlag, New York, 1994).

  4. J. Winter, R. Brandenburg, and K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015).

  5. E. A. Sosnin, E. Stoffels, M. V. Erofeev, I. E. Kieft, and S. E. Kunts, IEEE Trans. Plasma Sci. 32, 1544 (2004).

    Article  ADS  Google Scholar 

  6. F. T. O’Neill, B. Twomey, V. J. Law, V. Milosavljevi, M. G. Kong, S. D. Anghel, and D. P. Dowling, IEEE Trans. Plasma Sci. 40, 2994 (2012).

    Article  ADS  Google Scholar 

  7. X. L. Deng, A. Yu. Nikiforov, P. Vanraes, and Ch. Leys, J. Appl. Phys. 113, 023305 (2013).

  8. X. Li, W. Bao, P. Jia, and C. Di, J. Appl. Phys. 116, 023302 (2014).

  9. O. S. Zhdanova, V. S. Kuznetsov, V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, Plasma Phys. Rep. 44, 153 (2018).

    Article  ADS  Google Scholar 

  10. M. Pinchuk, A. Nikiforov, V. Snetov, Z. Chen, Ch. Leys, and O. Stepanova, Sci. Rep. 11, 17286 (2021).

    Article  ADS  Google Scholar 

  11. Y. Jiang, Y. Wang, J. Zhang, S. Cong, and D. Wang, J. Appl. Phys. 130, 233301 (2021).

  12. B. L. Sands, B. N. Ganguly, and K. Tachibana, Appl. Phys. Lett. 92, 151503 (2008).

  13. X. Lu, G. V. Naidis, M. Laroussi, and K. Ostrikov, Phys. Rep. 540, 123 (2014).

    Article  ADS  Google Scholar 

  14. G. V. Naidis, J. Appl. Phys. 112, 103304 (2012).

  15. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Rep. 630, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Laroussi, Front. Phys. 8, 00074 (2020). https://doi.org/10.3389/fphy.2020.00074

    Article  Google Scholar 

  17. L. Lin and Q. Wang, Plasma Chem. Plasma Process. 35, 925 (2015).

    Article  Google Scholar 

  18. S. Yamamoto, K. Nakazawa, A. Ogino, and F. Iwata, J. Micromech. Microeng. 32, 015006 (2021).

  19. V. S. Skakun, V. A. Panarin, D. S. Pechenitsyn, E. A. Sosnin, and V. F. Tarasenko, Russ. Phys. J. 59, 707 (2016).

    Article  Google Scholar 

  20. E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, V. F. Tarasenko, and E. Kh. Baksht, JETP Lett. 103, 761 (2016).

    Article  ADS  Google Scholar 

  21. E. A. Sosnin, N. Yu. Babaeva, V. Yu. Kozhevnikov, A. V. Kozyrev, G. V. Naidis, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, Phys.–Usp. 64, 191 (2021).

    Article  Google Scholar 

  22. E. A. Sosnin, V. S. Kuznetsov, and V. A. Panarin, Atmos. Oceanic Opt. 34, 722 (2021).

    Article  ADS  Google Scholar 

  23. D. Zou, X. Cao, X. Lu, and K. Ostrikov, Phys. Plasmas 22, 103517 (2015).

  24. L. Nie, F. Liu, X. Zhou, X. Lu, and Y. Xian, Phys. Plasmas 25, 053507 (2018).

  25. H.-H. Kim, N. Takeuchi, Y. Teramoto, A. Ogata, and A. A. Abdelaziz, Int. J. Plasma Environ. Sci. Technol. 14, e01004 (2020).

  26. A. A. Abdelaziz, Y. Teramoto, and H.-H. Kim, J. Phys. D: Appl. Phys. 55, 065201 (2021).

  27. I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, P. N. Sagulenko, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 21, 045012 (2012).

  28. E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, Tech. Phys. 63, 924 (2018).

    Article  Google Scholar 

  29. D. B. Kim, H. Jung, B. Gweon, and W. Choe, Phys. Plasmas 17, 073503 (2010).

  30. V. S. Kuznetsov, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, D. A. Sorokin, and E. A. Sosnin, Proc. SPIE 12086, 1208613 (2021).

  31. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  32. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

Download references

Funding

The work was supported by the State Task of the Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences (project no. FWRM-2021-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panarin, V.A., Skakun, V.S., Baksht, E.K. et al. Detecting the Fine Structure of Ionization Waves of Positive Streamers. Plasma Phys. Rep. 48, 812–818 (2022). https://doi.org/10.1134/S1063780X22600372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600372

Keywords:

Navigation