Skip to main content
Log in

Studies on the Effect of Dust–Ion Collision on Dust–Ion Acoustic Solitary Waves in a Magnetized Dusty Plasma in the Framework of Damped KP Equation and Modified Damped KP Equation

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of the dust–ion collision effect on the propagation of ion–acoustic waves (IAWs) in a collisional magnetized dusty plasma containing positive ions, dust grains with a negative charge and the electrons that follow combined Kappa–Cairns distribution is observed. Employing reductive perturbation technique (RPT), the damped Kadomtsev–Petviashvili (DKP) equation is derived from the basic governing equations and it is observed that there are some critical points for the plasma parameters for which the amplitude of solitary solution of DKP equation diverges. Then modified damped Kadomtsev–Petviashvili (MDKP) equation is derived by stretching the dependent variables in a different manner and the finite-amplitude soliton is explored there. The influence of various plasma parameters viz. entropic index (κ), nonthermal parameter (\({{\alpha }_{e}}\)), dust–ion collisional frequency (\({{\nu }_{{id0}}}\)), ratio of normalized electron density to ion density (μ), etc. on wave propagation is investigated numerically. Finally, comparative studies are drawn between the solitary wave solutions for different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).

    Article  ADS  Google Scholar 

  2. R. W. Revans, Phys. Rev. 44, 798 (1933).

    Article  ADS  Google Scholar 

  3. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

    Google Scholar 

  4. H. Ikezi, R. J. Taylor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  5. F. D. Tappert, Phys. Fluids 15, 2446 (1972).

    Article  ADS  Google Scholar 

  6. S. G. Tagare, Plasma Phys. 15, 1247 (1973).

    Article  ADS  Google Scholar 

  7. Active Galactic Nuclei, Ed. by H. R. Miller and P. J. Witta (Springer-Verlag, Berlin, 1987), p. 202.

    Google Scholar 

  8. V. S. Beskin, A. V. Gurevich and Ya. N. Istomin, Physics of the Pulsar Magnetosphere (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  9. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  10. E. Tandberg-Hansen and A. G. Emslie, The Physics of Solar Flares (Cambridge University Press, Cambridge, 1988), p. 124.

    Google Scholar 

  11. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  12. P. K. Shukla and V. P. Slin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  13. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  14. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  15. A. A. Mamun, Astrophys. Space. Sci. 268, 443 (1999).

    Article  ADS  Google Scholar 

  16. F. Melandso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  17. P. K. Shukla, M. Y. Yu, and R. Bharuthram, J. Geophys. Res.: Space Phys. 96, 21343 (1991).

    Article  ADS  Google Scholar 

  18. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  19. N. J. Zabusky, Chaos 15, 015102 (2005).

  20. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  21. D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).

    Article  MathSciNet  Google Scholar 

  22. D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).

    Article  MathSciNet  Google Scholar 

  23. H. Segur and A. Finkel, Stud. Appl. Math. 73, 183 (1985). https://doi.org/10.1002/sapm1985733183

    Article  MathSciNet  Google Scholar 

  24. J. Hammack, D. McCallister, N. Scheffner, and H. Segur, J. Fluid Mech. 285, 95 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  25. W.-S. Duan, Y.-R. Shi, and X.-R. Hong, Phys. Lett. A 323, 89 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Singh and T. Honzawa, Phys. Fluids B 5, 2093 (1993).

    Article  ADS  Google Scholar 

  27. A. R. Seadawy, Eur. Phys. J. Plus 130, 9 (2015).

    Article  Google Scholar 

  28. T. S. Gill, N. S. Saini, and H. Kaur, Chaos, Solitons Fractals 28, 1106 (2006).

    Article  ADS  Google Scholar 

  29. H. R. Pakzad, Chaos, Solitons Fractals 42, 874 (2009).

    Article  ADS  Google Scholar 

  30. E. K. El-Shewy, M. I. Abo El Maaty, H. G. Abdelwahed, and M. A. Elmessary, Astrophys. Space Sci. 332, 179 (2011).

    Article  ADS  Google Scholar 

  31. B. G. Konopechenko, Solitons in Multidimension: Inverse Spectral Transform Method (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  32. A.-M. Wazwaz, Appl. Math. Comput. 190, 633 (2007).

    MathSciNet  Google Scholar 

  33. T. Soomere, Phys. Lett. A 332, 74 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  34. Z. D. Dai, S. Li, Q. Dai, and J. Huang, Chaos, Solitons Fractals 34, 1148 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  35. J. S. Rowlinson, Mol. Phys. 103, 2821 (2005).

    Article  ADS  Google Scholar 

  36. H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).

    Book  MATH  Google Scholar 

  37. S. Olbert, in Physics of the Magnetosphere, Ed. by R. D. L. Carovillano and J. F. McClay (Springer, Berlin, 1968), Vol. 10, p. 641.

    Google Scholar 

  38. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  39. R. L. Mace and M. A. Hellberg, Phys. Plasmas 2, 2098 (1995).

    Article  ADS  Google Scholar 

  40. D. Cassi and B. Ricco, IEEE Trans. Electron Devices 37, 1514 (1990).

    Article  ADS  Google Scholar 

  41. R. A. Cairns, A. A. Mamum, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  42. K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008).

  43. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

  44. S. Younsi and M. Tribeche, Phys. Plasmas 15, 073706 (2008).

  45. V. Pierrard, M. Lazar, S. Poedts, Š. Štverák, M. Maksimovic, and P. Trávníček, Sol. Phys. 291, 2165 (2016).

    Article  ADS  Google Scholar 

  46. A. A. Abid, S. Ali, J. Du, and A. A. Mamun, Phys. Plasmas 22, 084507 (2015).

  47. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  48. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  49. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  50. S. I. Popel, A. P. Golub’, and T. V. Losseva, JETP Lett. 74, 362 (2001).

    Article  ADS  Google Scholar 

  51. S. I. Popel, A. P. Golub’, and T. V. Losseva, AIP Conf. Proc. 649, 204 (2002).

    Article  ADS  Google Scholar 

  52. S. Maitra and G. Banerjee, Phys. Plasmas 21, 113707 (2014).

  53. S. Ghosh, J. Plasma Phys. 71, 519 (2005).

    Article  ADS  Google Scholar 

  54. M. Shalaby, S. K. El-Labany, E. F. El-Shamy, and M. A. Khaled, Astrophys. Space Sci. 326, 273 (2010).

    Article  ADS  Google Scholar 

  55. M. R. Gupta, S. Sarkar, S. Ghosh, M. Debnath, and M. Khan, Phys. Rev. E 63, 046406 (2001).

  56. H. Alinejad and M. Shahmansouri, IEEE Trans. Plasma Sci. 47, 4378 (2019).

    Article  ADS  Google Scholar 

  57. S. Sultana, Phys. Lett. A 382, 1368 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  58. Y.-F. Li, J. X. Ma, and J.-J. Li, Phys. Plasmas 11, 1366 (2004).

    Article  ADS  Google Scholar 

  59. D. Debnath and A. Bandyopadhyay, Astrophys. Space Sci. 365, 72 (2020).

    Article  ADS  Google Scholar 

  60. T. Taniuti and C. C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968).

    Article  ADS  Google Scholar 

  61. T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969).

    Article  ADS  Google Scholar 

  62. M.-M. Lin and W.-S. Duan, Chaos, Solitons Fractals 23, 929 (2005).

    Article  ADS  Google Scholar 

  63. Zhao Jun-Xiao and Guo Bo-Ling, Commun. Theor. Phys. 52, 279 (2009).

    Article  ADS  Google Scholar 

  64. A. Sen, S. Tiwari, S. Mishra, and P. Kaw, Adv. Space Res. 56, 429 (2015).

    Article  ADS  Google Scholar 

  65. R. Ali, A. Saha, and P. Chatterjee, Phys. Plasmas 24, 122106 (2017).

  66. T. K. Das, R. Ali, and P. Chatterjee, Phys. Plasmas 24, 103703 (2017).

  67. S. Chowdhury, L. Mandi, and P. Chatterjee, Phys. Plasmas 25, 042112 (2018).

  68. K. K. Mondal, A. Roy, P. Chatterjee, and S. Raut, Int. J. Appl. Comput. Math. 6, 55 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raut.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Raut, S. & Barman, R. Studies on the Effect of Dust–Ion Collision on Dust–Ion Acoustic Solitary Waves in a Magnetized Dusty Plasma in the Framework of Damped KP Equation and Modified Damped KP Equation. Plasma Phys. Rep. 48, 367–383 (2022). https://doi.org/10.1134/S1063780X22040018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22040018

Keywords:

Navigation