Abstract
A numerical model is used to study the possibility of a thin current sheet formation in the near-Earth magnetotail in the growth phase of a substorm for a wide range of parameters of longitudinal countermoving ion flows that create current sheet. The simulation results make it possible to conclude that the current sheet can be formed by oxygen ion flows of ionospheric origin in cases where the proton fluxes can be neglected or they are rather weak. Such conditions are realized in the Earth’s magnetosphere during periods of increased geomagnetic activity. In addition, the influence of electron pressure anisotropy on the steady-state configuration of the considered current sheet is investigated.
This is a preview of subscription content,
to check access.












REFERENCES
O. L. Vaisberg, L. A. Avanov, J. L. Burch, and J. H. Waite, Jr., Adv. Space Res. 18 (8), 63 (1996). https://doi.org/10.1016/0273-1177(95)00998-1
L. M. Kistler, C. Mouikis, E. Möbius, B. Klecker, J. A. Sauvaud, H. Rème, A. Korth, R. Marcucci, M. F. Lundin, G. K. Parks, and A. Balogh, J. Geophys. Res.: Space Phys. 110, A06213 (2005). https://doi.org/10.1029/2004JA010653
L. M. Kistler, C. G. Mouikis, X. Cao, H. Frey, B. Klecker, I. Dandouras, A. Korth, M. F. Marcucci, R. Lundin, M. McCarthy, R. Friedel, and E. Lucek, J. Geophys. Res.: Space Phys. 111, A11222 (2006). https://doi.org/10.1029/2006JA011939
E. A. Kronberg, M. Ashour-Abdalla, I. Dandouras, D. C. Delcourt, E. E. Grigorenko, L. M. Kistler, I. V. Kuzichev, J. Liao, R. Maggiolo, H. V. Malova, K. G. Orlova, V. Peroomian, D. R. Shklyar, Y. Y. Shprits, D. T. Welling, et al., Space Sci. Rev. 184, 173 (2014). https://doi.org/10.1007/s11214-014-0104-0
E. A. Kronberg, D. Welling, L. M. Kistler, C. Mouikis, P. W. Daly, E. E. Grigorenko, B. Klecker, and I. Dandouras, J. Geophys. Res.: Space Phys. 122, 9427 (2017). https://doi.org/10.1002/2017ja024215
L. M. Zelenyi, Kh. V. Malova, A. V. Artemyev, V. Yu. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).
L. M. Zelenyi, Kh. V. Malova, E. E. Grigorenko, and V. Yu. Popov, Phys.–Usp. 59, 1057 (2016).
D. N. Baker, E. W. Hones, Jr., D. T. Young, and J. Birn, Geophys. Res. Lett. 9, 1337 (1982). https://doi.org/10.1029/GL009i012p01337
W. K. Peterson, R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger, J. Geophys. Res.: Space Phys. 86, 761 (1981). https://doi.org/10.1029/JA086iA02p00761
R. D. Sharp, D. L. Carr, W. K. Peterson, and E. G. Shelley, J. Geophys. Res.: Space Phys. 86, 4639 (1981). https://doi.org/10.1029/JA086iA06p04639
O. W. Lennartsson, J. Geophys. Res.: Space Phys. 99, 2387 (1994). https://doi.org/10.1029/93JA03201
M. Nosé, A. T. Y. Lui, S. Ohtani, B. H. Mauk, R. W. McEntire, D. J. Williams, T. Mukai, and K. Yumoto, J. Geophys. Res.: Space Phys. 105, 7669 (2000). https://doi.org/10.1029/1999JA000318
A. W. Yau, T. Abe, and W. K. Peterson, J. Atmos. Sol.‑Terr. Phys. 69, 1936 (2007). https://doi.org/10.1016/j.jastp.2007.08.010
A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, R. Nakamura, H. V. Malova, and V. Y. Popov, Ann. Geophys. 27, 4075 (2009). https://doi.org/10.5194/angeo-27-4075-2009
A. V. Artemyev, V. Angelopoulos, A. Runov, and X.‑J. Zhang, J. Geophys. Res.: Space Phys. 125, e2019JA027612 (2020). https://doi.org/10.1029/2019JA027612
O. V. Mingalev, Kh. V. Malova, I. V. Mingalev, M. N. Mel’nik, P. V. Setsko, and L. M. Zelenyi, Plasma Phys. Rep. 44, 899 (2018).
L. M. Zelenyi, H. V. Malova, V. Y. Popov, D. C. Delcourt, N. Y. Ganushkina, and A. S. Sharma, Geophys. Res. Lett. 33, L05105 (2006). https://doi.org/10.1029/2005GL025117
V. I. Domrin, Kh. V. Malova, V. Yu. Popov, E. E. Grigorenko, and A. A. Petrukovich, Geomagn. Aeron. 60, 173 (2020).
O. V. Mingalev, I. V. Mingalev, V. S. Mingalev, Kh. V. Malova, A. M. Merzlyi, and O. V. Khabarova, Plasma Phys. Rep. 46, 374 (2020).
J. D. Huba, G. Joyce, and J. A. Fedder, J. Geophys. Res.: Space Phys. 105, 23035 (2000).
J. D. Huba, G. Joyce, and J. Krall, Geophys. Res. Lett. 35, L10102 (2008).
J. D. Huba, A. Maute, and G. Crowley, Space Sci. Rev. 212, 731 (2017).
G. V. Khazanov, A. K. Tripathi, D. Sibeck, E. Himwich, A. Glocer, and R. P. Singhal, J. Geophys. Res.: Space Phys. 120, 9891 (2015). https://doi.org/10.1002/2015JA021728
P. T. Newell, T. Sotirelis, and S. Wing, J. Geophys. Res.: Space Phys. 114, A09207 (2009). https://doi.org/10.1029/2009JA014326
R. L. Lysak, J. Geophys. Res.: Space Phys. 109, A07201 (2004). https://doi.org/10.1029/2004JA010454
L. I. Rudakov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Pergamon, New York, 1959), Vol. 3, p. 321.
A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 2, p. 201.
T. F. Volkov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 1.
R. M. Kulsrud, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983), Vol. 1, p. 115.
V. I. Ilgisonis, Phys. Fluids B 5, 2387 (1993). https://doi.org/10.1063/1.860722
L. M. Zelenyi, Kh. V. Malova, and V. Yu. Popov, JETP Lett. 78, 296 (2003).
D. C. Delcourt, H. V. Malova, and L. M. Zelenyi, Geophys. Res. Lett. 33, L06106 (2006). https://doi.org/10.1029/2005GL025463
E. E. Grigorenko, L. M. Zelenyi, G. DiBraccio, V. N. Ermakov, S. D. Shuvalov, H. V. Malova, V. Y. Popov, J. S. Halekas, D. L. Mitchell, and E. Dubinin, Geophys. Res. Lett. 46, 6214 (2019). https://doi.org/10.1029/2019GL082709
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by L. Mosina
Rights and permissions
About this article
Cite this article
Mingalev, O.V., Setsko, P.V., Mel’nik, M.N. et al. Role of Oxygen Ions in the Structure of the Current Sheet of the Near-Earth Magnetotail. Plasma Phys. Rep. 48, 242–262 (2022). https://doi.org/10.1134/S1063780X22030096
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063780X22030096