Skip to main content
Log in

On the Impedance of the High-Frequency Capacitive Discharge at Different Excitation Methods

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A low-pressure (ν ≪ ω) capacitive high-frequency discharge with large-area electrodes when it is excited by an electromagnetic field with a frequency from 13 to 900 MHz is considered. General analytical formulas are obtained for the amplitudes of natural waves and the impedance of the discharge. It is taken into account that the excitation of surface waves and higher nonpropagating modes occurs due to the axial inhomogeneity of the plasma–metal layer structure and due to edge effects at the electrode cut. The higher amplitude of the resonance modes in this case (in comparison with the excitation of the discharge by a TEM wave) leads to a greater irregularity in the dependence of the discharge impedance on the electron density. This conclusion is confirmed by the direct calculation of impedance using the Comsol Multiphysics® software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005).

    Book  Google Scholar 

  2. J. Perrin, J. Schmitt, C. Hollenstein, A. Howling, and L. Sansonnens, Plasma Phys. Control. Fusion. 42, B353 (2000).

    Article  ADS  Google Scholar 

  3. J. Schmitt, M. Elyaakoubi, and L. Sansonnens, Plasma Sources Sci. Technol. 11, A206 (2002).

    Article  ADS  Google Scholar 

  4. S. E. Park, B. U. Cho, J. K. Lee, Y. J. Lee, and G. Y. Yeom, IEEE Trans. Plasma Sci. 31, 628 (2003).

    Article  ADS  Google Scholar 

  5. J. Taillet, Am. J. Phys. 37, 423 (1969).

    Article  ADS  Google Scholar 

  6. M. A. Liberman, J. P. Booth, P. Chabert, J. M. Rax, and M. M. Turner, Plasma Sources Sci. Technol. 11, 283 (2002).

    Article  ADS  Google Scholar 

  7. P. Chabert, J. Phys. D.: Appl. Phys. 40, R63 (2007).

    Article  ADS  Google Scholar 

  8. S. A. Dvinin, O. A. Sinkevich, Z. A. Kodirzoda, and D. K. Solikhov, Plasma Phys. Rep. 47, 28 (2021).

    Article  ADS  Google Scholar 

  9. S. A. Dvinin, O. A. Sinkevich, Z. A. Kodirzoda, and D. K. Solikhov, Plasma Phys. Rep. 47, 211 (2021).

    Article  ADS  Google Scholar 

  10. S. A. Dvinin, O. A. Sinkevich, Z. A. Kodirzoda, and D. K. Solikhov, Plasma Phys. Rep. 46, 1181 (2020).

    Article  ADS  Google Scholar 

  11. S. Wilczek, J. Schulze, R. P. Brinkmann, Z. Donkó, J. Trieschmann, and T. Mussenbrock, J. Appl. Phys. 127, 181101 (2020).

  12. P. Zhang, L. Zhang, and K. Lv, Plasma Chem. Plasma Process. 40, 1605 (2020).

    Article  Google Scholar 

  13. P. Zhang, L. Zhang, and L. Xu, Plasma Processes Polym. 17, 2000014 (2020).

  14. S. J. Doyle, A. R. Gibson, R. W. Boswell, C. Charles, and J. P. Dedrick, Plasma Sources Sci. Technol. 29, 124002 (2020).

  15. Y.-R. Zhang, Y.-T. Hu, and Y.-N. Wang. Plasma Sources Sci. Technol. 29, 084003 (2020).

  16. K. Zhao, Z.-X. Su, J.-R. Liu, Y.-X. Liu, Y.-R. Zhang, J. Schulze, Y.-H. Song, and Y.-N. Wang, Plasma Sources Sci. Technol. 29, 124001 (2020).

  17. I. Korolov, M. Leimkühler, M. Böke, Z. Donkó, V. Schulz-von der Gathen, L. Bischoff, G. Hübner, P. Hartmann, T. Gans, Y. Liu, T. Mussenbrock, and J. Schulze, J. Phys. D: Appl. Phys. 53, 185201 (2020).

  18. P. Hartmann, L. Wang, K. Nösges, B. Berger, S. Wilczek, R. P. Brinkmann, T. Mussenbrock, Z. Juhasz, Z. Donkó, A. Derzsi, E. Lee, and J. Schulze, Plasma Sources Sci. Technol. 29, 075014 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dvinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvinin, S.A., Sinkevich, O.A., Kodirzoda, Z.A. et al. On the Impedance of the High-Frequency Capacitive Discharge at Different Excitation Methods. Plasma Phys. Rep. 48, 74–77 (2022). https://doi.org/10.1134/S1063780X22010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22010044

Keywords:

Navigation