Skip to main content
Log in

Alfvén Modes in the Plasma of T-15MD and TRT Tokamaks with a Negative Magnetic Shear

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The stability of the Alfvén eigenmodes (AE) in a plasma with negative magnetic shear excited by fast particles is analyzed for the T-15MD and TRT tokamaks. Scenarios with a negative shear for the T-15MD tokamak and for the new TRT tokamak with a magnetic field of up to 8 T, total plasma current of 4 MA, and additional injection heating with a power of up to 40 MW were calculated using the ASTRA code. The Alfvén modes in the T-15MD and TRT tokamaks can be excited by high-energy ions of the heating beam and by thermonuclear alpha particles in the deuterium–tritium plasma in TRT. The spatial structure and frequencies of various AEs with toroidal numbers n = 1–8 were calculated using the ideal MHD stability KINX code. Landau damping on ions of the main plasma, linear growth rates, nonlinear evolution of the amplitude of modes excited by fast particles, and the effect on particle losses are calculated using the VENUS code. The non-monotonic profile of the safety factor associated with auxiliary ECR heating with a power of 13 MW opens up additional possibilities for the excitation of modes on several magnetic surfaces. The results of numerical calculations of the Alfvén modes in the new TRT tokamak are compared with the results of tokamaks with similar parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. M. A. Van Zeeland, N. N. Gorelenkov, W. W. Heidbrink, G. J. Kramer, D. A. Spong, M. E. Austin, R. K. Fisher, M. García Muñoz, M. Gorelenkova, N. Luhmann, M. Murakami, R. Nazikian, D. C. Pace, J. M. Park, B. J. Tobias, et al., Nucl. Fusion 52, 094023 (2012).

  2. Y. Zou, V. S. Chan, J. Huang, C. S. Collins, A. M. Garofalo, W. F. Guo, and M. Ye, Nucl. Fusion 59, 066005 (2019).

  3. A. Könies, S. Briguglio, N. Gorelenkov, T. Fehér, M. Isaev, P. Lauber, A. Mishchenko, D. Spong, Y. Todo, W. Cooper, R. Hatzky, R. Kleiber, M. Borchardt, G. Vlad, A. Biancalani, et al., Nucl. Fusion 58, 126027 (2018).

  4. S. D. Pinches, I. T. Chapman, P. W. Lauber, H. D. C. Oliver, S. E. Sharapov, K. Shinohara, and K. Tani, Phys. Plasmas 22, 021807 (2015).

  5. P. P. Khvostenko, E. N. Bondarchuk, A. A. Kavin, V. M. Leonov, and A. N. Chudnovskii, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 43 (3), 60 (2020).

    Google Scholar 

  6. V. M. Leonov, Phys. At. Nucl. 80, 1320 (2017).

    Article  Google Scholar 

  7. M. Y. Isaev, V. M. Leonov, and S. Y. Medvedev, Fusion Sci. Technol. 75, 218 (2019).

    Article  Google Scholar 

  8. N. N. Gorelenkov, E. Belova, H. L. Berk, C. Z. Cheng, E. Fredrickson, W. W. Heidbrink, S. Kaye, and G. J. Kramer, Phys. Plasmas 11, 2586 (2004).

    Article  ADS  Google Scholar 

  9. B. N. Breizman, H. L. Berk, M. S. Pekker, S. D. Pinches, and S. E. Sharapov, Phys. Plasmas 10, 3649 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Yu. Medvedev, A. A. Martynov, V. K. Gusev, A. V. Petrov, M. I. Patrov, A. Yu. Tel’nova, A. A. Ivanov, and Yu. Yu. Poshekhonov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 41 (2), 95 (2018).

    Google Scholar 

  11. M. Y. Isaev, P. B. Aleynikov, S. V. Konovalov, and S. Y. Medvedev, in Proceedings of the 25th IAEA Fusion Energy Conference, Saint Petersburg, 2014, Paper TH/P3-39.

  12. J. Huang, X. Gong, A. M. Garofalo, J. Qian, J. Chen, M. Wu, M. Li, Q. Yuan, L. Wang, C. Pan, X. Lin, Q. Yang, A. Ekedahl, R. Maingi, C. T. Holcomb, et al., Plasma Phys. Control. Fusion 62, 014019 (2020).

  13. F. Zonca and L. Chen, Phys. Fluids B 5, 3668 (1993).

    Article  ADS  Google Scholar 

  14. M. Takechi, A. Fukuyama, M. Ishikawa, C. Z. Cheng, K. Shinohara, T. Ozeki, Y. Kusama, S. Takeji, T. Fujita, T. Oikawa, T. Suzuki, N. Oyama, A. Morioka, N. N. Gorelenkov, G. J. Kramer, et al., Phys. Plasmas 12, 082509 (2005).

  15. Yu. V. Petrov, N. N. Bakharev, V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, A. A. Martynov, S. Yu. Medvedev, V. B. Minaev, M. I. Patrov, A. V. Petrov, N. V. Sakharov, P. B. Shchegolev, A. Yu. Tel’nova, S. Yu. Tolstyakov, and A. Yu. Yashin, Plasma Phys. Rep. 45, 723 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S. Hirshman for the possibility of using the DESCUR and VMEC codes, to W.A. Cooper for the possibility of using the TERPSICHORE code, and to S. Konovalov and A. Krasilnikov for their support. We are grateful to the members of the International Fast Particle Physics ITPA-EP Group for their cooperation and assistance in the work. The work was carried out using the equipment of the Center for Collective Use “Complex for the Simulation and Data Processing of Mega-Class Research Facilities” of the   National Research Center “Kurchatov Institute,” http://ckp.nrcki.ru.

Funding

The work was supported by the State Atomic Energy Corporation Rosatom under the contract of September 5, 2019 no. 313/1671-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Isaev.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, M.Y., Leonov, V.M. & Medvedev, S.Y. Alfvén Modes in the Plasma of T-15MD and TRT Tokamaks with a Negative Magnetic Shear. Plasma Phys. Rep. 47, 1137–1150 (2021). https://doi.org/10.1134/S1063780X21110180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21110180

Keywords:

Navigation