Skip to main content
Log in

Albert Galeev: The Problem of Metastability and Explosive Reconnection

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

−Albert Abubakirovich Galeev is a Soviet and Russian expert in plasma physics who actively contributed to fusion research. In the early 1970s, he became a head of department at the Space Research Institute of the Academy of Sciences of USSR and began devoting most of his time to the problems of the physics of space plasma and made a very important contribution to the solution of many of them, such as physics of collisionless shock waves, the phenomenon of anomalous ionization, processes in the plasma envelopes of comets, and many others. This paper is devoted to only one of the many directions of his work: studies of current sheets and the magnetic reconnection processes that occur therein. Studies of thin current structures is space plasma, whose thickness is about the proton gyroradius, began with the pioneering works of S.I. Syrovatskii, T. Speiser, and other outstanding scientists who proposed that in space plasma, thin boundary current sheets exist, which play the key role in the dynamics of Earth’s magnetosphere and Sun’s corona. The development of these works was dictated by the necessity to explain the solar flares and magnetospheric perturbations during which phases of evolutionary development are replaced by explosive spontaneous processes that release free energy. One of the key physical processes is the magnetic field reconnection, which is realized in nature as a part of the general problem of generation and evolution of current sheets. In a series of works that started in 1975 by the publication (together with L.M. Zelenyi) of the article entitled “Metastable states of a diffuse neutral layer” in JETP letters, A.A. Galeev studied the stability of current sheets to the tearing mode and the dynamics of magnetic reconnection at the boundary of planetary magnetospheres and explained the processes of generation of fast ion flows with energies of several MeV in Earth’s magnetotail. In this paper, we discuss further development of these works that were once initiated by A.A. Galeev. A new model of embedded current sheets is presented, which consists of an internal electron sheet and two external current sheets formed by proton and oxygen ion currents. It is shown that the free energy of such embedded structure in the corresponding range of parameters substantially exceeds the free energy of the well-known Harris’s configuration. This allows one to simultaneously explain their stability (up to a certain limit) and destabilization when the current sheet parameters reach certain critical values, which leads to the change of topology of magnetic field and start of magnetic reconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. N. F. Ness, J. Geophys. Res. 70, 2989 (1965).

    Article  ADS  Google Scholar 

  2. W. I. Axford and C. O. Hines, Can. J. Phys. 39, 1433 (1961).

    Article  ADS  Google Scholar 

  3. J. W. Dungey, Phys. Rev. Lett. 6, 47 (1961). https://doi.org/10.1103/physrevlett.6.47

    Article  ADS  Google Scholar 

  4. W. Baumjohann and G. Paschmann, J. Geophys. Res.: Space Phys. 95, 10707 (1990). https://doi.org/10.1029/JA095iA07p10707

    Article  ADS  Google Scholar 

  5. W. J. Heikkila, Space Sci. Rev. 53, 1 (1990). https://doi.org/10.1007/BF00217427

    Article  ADS  Google Scholar 

  6. L. M. Zelenyi, Kh. V. Malova, A. V. Artem’ev, V. Yu. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).

    Article  ADS  Google Scholar 

  7. E. E. Grigorenko, L. M. Zelenyi, G. DiBraccio, V. N. Ermakov, S. D. Shuvalov, H. V. Malova, V. Y. Popov, J. S. Halekas, D. L. Mitchell, and E. Dubinin, Geophys. Res. Lett. 46, 6214 (2019). https://doi.org/10.1029/2019GL082709

    Article  ADS  Google Scholar 

  8. O. L. Vaisberg, L. A. Avanov, V. N. Smirnov, J. L. Burch, J. H. Waite, Jr., A. A. Petrukovich, and A. A. Skalsky, Adv. Space Res. 20, 789 (1997). https://doi.org/10.1016/S0273-1177(97)00511-5

    Article  ADS  Google Scholar 

  9. E. V. Panov, J. Büchner, M. Fränz, A. Korth, Y. Khotyaintsev, B. Nikutowski, S. Savin, K.-H. Fornacon, I. Dandouras, and H. C. Rème, Adv. Space Res. 37, 1363 (2006).

    Article  ADS  Google Scholar 

  10. A. Runov, V. A. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Vörös, T. L. Zhang, J.-A. Sauvaud, H. Rème, and A. Balogh, Ann. Geophys. 23, 1391 (2005).

    Article  ADS  Google Scholar 

  11. J. Sanny, R. L. McPherron, C. T. Russell, D. N. Baker, T. I. Pulkkinen, and A. Nishida, J. Geophys. Res.: Space Phys. 99, 5805 (1994).

    Article  ADS  Google Scholar 

  12. Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, and T. Nagai, J. Geophys. Res.: Space Phys. 108, 1189 (2003). https://doi.org/10.1029/2002JA009785

    Article  ADS  Google Scholar 

  13. D. N. Baker, T. I. Pulkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron, J. Geophys. Res.: Space Phys. 101, 12975 (1996).

    Article  ADS  Google Scholar 

  14. A. A. Galeev and L. M. Zelenyi, Sov. Phys.–JETP 43, 1113 (1976).

    ADS  Google Scholar 

  15. L. M. Zelenyi, A. V. Artemyev, Kh. V. Malova, A. A. Petrukovich, and R. Nakamura, Phys.–Usp. 53, 933 (2010). https://doi.org/10.3367/UFNe.0180.201009g.0973

    Article  Google Scholar 

  16. H. E. Petschek, in The Physics of Solar Flares, Ed. by W. N. Hess (NASA, Washington, 1964), p. 425.

    Google Scholar 

  17. E. N. Parker, J. Geophys. Res. 62, 509 (1957).

    Article  ADS  Google Scholar 

  18. B. Coppi, G. Laval, and R. Pellat, Phys. Rev. Lett. 16, 1207 (1966).

    Article  ADS  Google Scholar 

  19. A. A. Galeev, in Basic Plasma Physics, Ed. by A. A. Ga-leev and R. N. Sudan (North-Holland, Amsterdam, 1984), Vol. 2, p. 305.

    Google Scholar 

  20. L. Zelenyi, A. Artemyev, H. Malova, and V. Popov, J. Atmos. Sol.–Terr. Phys. 70, 325 (2008).

    Article  ADS  Google Scholar 

  21. D. H. Fairfield, in Magnetic Reconnection in Space and Laboratory Plasma (Geophysical Monograph Series., Vol. 30), Ed. by E. W. Hones, Jr. (AGU, Washington, DC, 1984), p. 168. https://doi.org/10.1029/GM030p0168

    Book  Google Scholar 

  22. J. Birn, K. Schindler, and M. Hesse, J. Geophys. Res. 108, 1337 (2003). https://doi.org/10.1029/2002JA009641

    Article  Google Scholar 

  23. A. T. Y. Lui, A. Mankofsky, C.-L. Chang, K. Papadopoulos, and C. S. Wu, Geophys. Res. Lett. 17, 745 (1990). https://doi.org/10.1029/GL017i006p00745

    Article  ADS  Google Scholar 

  24. V. A. Sergeev, D. G. Mitchell, C. T. Russell, and D. J. Williams, J. Geophys. Res.: Space Phys. 98, 17345 (1993). https://doi.org/10.1029/93JA01151

    Article  ADS  Google Scholar 

  25. T. I. Pulkkinen, D. N. Baker, C. J. Owen, J. T. Gosling, and N. Murphy, Geophys. Res. Lett. 20, 2427 (1993). https://doi.org/10.1029/93GL01590

    Article  ADS  Google Scholar 

  26. R. L. McPherron, A. Nishida, and C. T. Russell, in Quantitative Modeling of Magnetosphere–Ionosphere Coupling Processes, Ed. by Y. Kamide and R. A. Wolf (Kyoto Sangyo University, Kyoto, 1987), p. 252.

    Google Scholar 

  27. A. Runov, W. Baumjohann, R. Nakamura, V. A. Sergeev, O. Amm, H. Frey, I. Alexeev, A. N. Fazakerley, C. J. Owen, E. Lucek, M. André, A. Vaivads, I. Dandouras, and B. Klecker, J. Geophys. Res.: Space Phys. 113, A07S27 (2008). https://doi.org/10.1029/2007JA012685

  28. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). https://doi.org/10.1063/1.1706761

    Article  ADS  Google Scholar 

  29. E. G. Harris, Nuovo Cimento A 23, 115 (1962).

    Article  Google Scholar 

  30. K. Schindler, J. Geophys. Res. 79, 2803 (1974). https://doi.org/10.1029/JA079i019p02803

    Article  ADS  Google Scholar 

  31. A. A. Galeev and L. M. Zelenyi, JETP Lett. 22, 170 (1975).

    ADS  Google Scholar 

  32. B. Lembège and R. Pellat, Phys. Fluids 25, 1995 (1982).

    Article  ADS  Google Scholar 

  33. A. A. Galeev, F. V. Coroniti, and M. Ashour-Abdalla, Geophys. Res. Lett. 5, 707 (1978). https://doi.org/10.1029/GL005i008p00707

    Article  ADS  Google Scholar 

  34. J. Büchner and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 94, 11821 (1989).

    Article  ADS  Google Scholar 

  35. R. Pellat, F. V. Coroniti, and P. L. Pritchett, Geophys. Res. Lett. 18, 143 (1991).

    Article  ADS  Google Scholar 

  36. M. Brittnacher, K. B. Quest, and H. Karimabadi, J. Geophys. Res.: Space Phys. 103, 4587 (1998).

    Article  ADS  Google Scholar 

  37. L. M. Zelenyi and A. L. Taktakishvili, Sov. J. Plasma Phys. 7, 585 (1981).

    Google Scholar 

  38. B. V. Somov and A. I. Verneta, Space Sci. Rev. 65, 253 (1993).

    Article  ADS  Google Scholar 

  39. M. I. Sitnov, H. V. Malova, and A. T. Y. Lui, J. Geophys. Res.: Space Phys. 102, 163 (1997). https://doi.org/10.1029/96JA01872

    Article  ADS  Google Scholar 

  40. M. I. Sitnov and A. S. Sharma, in SUBSTORMS-4, International Conference on Substorms-4, Ed. by S. Ko-kubun and Y. Kamide (Terra Scientific, Tokyo, 1998), p. 539. http://www.gbv.de/dms/goettingen/267587961.pdf.

    Google Scholar 

  41. M. I. Sitnov, H. V. Malova, and A. S. Sharma, Geophys. Res. Lett. 25, 269 (1998). https://doi.org/10.1029/97GL03708

    Article  ADS  Google Scholar 

  42. L. M. Zelenyi, A. V. Artemyev, Kh. V. Malova, A. A. Petrukovich, and R. Nakamura, Phys.–Usp. 53, 933 (2010). https://doi.org/10.3367/UFNe.0180.201009g.0973

    Article  Google Scholar 

  43. H. Karimabadi, W. Daughton, P. L. Pritchett, and D. Krauss-Varban, J. Geophys. Res.: Space Phys. 108, 1400 (2003). https://doi.org/10.1029/2003JA010026

    Article  ADS  Google Scholar 

  44. J. Büchner and J.-P. Kuska, Ann. Geophys. 17, 604 (1999).

    Article  ADS  Google Scholar 

  45. I. Voronkov, R. Rankin, P. Frycz, V. T. Tikhonchuk, and J. C. Samson, J. Geophys. Res.: Space Phys. 102, 9639 (1997).

    Article  ADS  Google Scholar 

  46. J. D. Huba, N. T. Gladd, and K. Papadopoulos, Geophys. Res. Lett. 4, 125 (1977).

    Article  ADS  Google Scholar 

  47. M. M. Kuznetsova and L. M. Zelenyi, Geophys. Res. Lett. 18, 1825 (1991).

    Article  ADS  Google Scholar 

  48. P. L. Pritchett, F. V. Coroniti, R. Pellat, and H. Karimabadi, J. Geophys. Res.: Space Phys. 96, 11523 (1991).

    Article  ADS  Google Scholar 

  49. F. Bagenal, Annu. Rev. Earth Planet. Sci. 20, 289 (1992).

    Article  ADS  Google Scholar 

  50. F. Bagenal, in Encyclopedia by Astronomy and Astrophysics, Ed. by P. Murdin (IOP, Philadelphia, 2001).

    Google Scholar 

  51. S. W. H. Cowley, S. V. Badman, E. J. Bunce, J. T. Clarke, J.-C. Gérard, D. Grodent, C. M. Jackman, S. E. Milan, and T. K. Yeoman, J. Geophys. Res.: Space Phys. 110, A02201 (2005). https://doi.org/10.1029/2004JA010796

  52. M. Fujimoto, W. Baumjohann, K. Kabin, R. Nakamura, J. A. Slavin, N. Terada, and L. Zelenyi, in Mercury (Space Sciences Series of ISSI), Ed. by A. Balogh, L. Ksanfomality, and R. von Steiger (Springer-Verlag, New York, 2008), p. 347.

    Google Scholar 

  53. T. I. Gombosi and A. P. Ingersoll, Science 327 (5972), 1476 (2010).

    Article  ADS  Google Scholar 

  54. K. K. Khurana, M. G. Kivelson, V. M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B. H. Mauk, and W. S. Kurth, in Jupiter: The Planet, Satellites and Magnetosphere, Ed. by F. Bagenal, T. E. Dowling, and W. B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), p. 593.

    Google Scholar 

  55. K. Mursula and T. Hiltula, Geophys. Res. Lett. 30, 2135 (2003).

    Article  ADS  Google Scholar 

  56. O. V. Khabarova, H. V. Malova, R. A. Kislov, L. M. Zelenyi, V. N. Obridko, A. F. Kharshiladze, T. Munetoshi, J. M. Sokol, and G. Stan, Astrophys. J. 836, 108 (2017). https://doi.org/10.3847/1538-4357/836/1/108

    Article  ADS  Google Scholar 

  57. O. Malandraki, P. Khabarova, R. Bruno, G. P. Zank, G. Li, B. Jackson, M. M. Bisi, A. Greco, O. Pezzi, W. Matthaeus, A. C. Giannakopoulos, S. Servidio, H. Malova, R. Kislov, F. Effenberger, et al., Astrophys. J. 881, 116 (2019). https://doi.org/10.3847/1538-4357/ab289a

    Article  ADS  Google Scholar 

  58. A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, H. V. Malova, V. Y. Popov, R. Nakamura, A. Runov, and S. Apatenkov, Ann. Geophys. 26, 2749 (2008).

    Article  ADS  Google Scholar 

  59. A. S. Sharma, R. Nakamura, A. Runov, E. E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C. J. Owen, A. Petrukovich, J.-A. Sauvaud, V. S. Semenov, V. A. Sergeev, J. A. Slavin, B. U. Ö. Sonnerup, L. M. Zelenyi, et al., Ann. Geophys. 26, 955 (2008). https://doi.org/10.5194/angeo-26-955-2008

    Article  ADS  Google Scholar 

  60. M. Ashour-Abdalla, J. P. Berchem, J. Büchner, and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 98, 5651 (1993).

    Article  ADS  Google Scholar 

  61. M. Ashour-Abdalla, L. A. Frank, W. R. Paterson, V. Peroomian, and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 101, 2587 (1996).

    Article  ADS  Google Scholar 

  62. L. M. Zelenyi, H. V. Malova, E. E. Grigorenko, V. Y. Popov, and E. M. Dubinin, Geophys. Res. Lett. 47, e2020GL088422 (2020). https://doi.org/10.1029/2020GL088422

  63. M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, ans S. Kokubun, J. Geophys. Res.: Space Phys. 101, 24775 (1996).

    Article  ADS  Google Scholar 

  64. R. Nakamura, W. Baumjohann, A. Runov, and Y. Asano, Space Sci. Rev. 122, 29 (2006). https://doi.org/10.1007/s11214-006-6219-1

    Article  ADS  Google Scholar 

  65. T. W. Speiser, J. Geophys. Res. 70, 4219 (1965).

    Article  ADS  Google Scholar 

  66. D. G. Mitchell, G. J. Williams, C. Y. Huang, L. A. Frank, and C. T. Russell, Geophys. Res. Lett. 17, 583 (1990).

    Article  ADS  Google Scholar 

  67. B. A. Tverskoi, in Proceedings of Conference on Problems of Plasma Theory, Kiev, 1972, Ed. by A. G. Sitenko, p. 396.

  68. V. P. Shabanskii, Sov. Phys.–JETP 13, 746 (1961).

    MathSciNet  Google Scholar 

  69. K. Schindler, in Earth’s Magnetospheric Processes, Ed. by B. M. McCormak (Reidel, Dordrecht, 1972), p. 200.

    Google Scholar 

  70. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res.: Space Phys. 97, 16773 (1992).

    Article  ADS  Google Scholar 

  71. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res.: Space Phys. 100, 23551 (1995).

    Article  ADS  Google Scholar 

  72. J. R. Kan, J. Geophys. Res. 78, 3773 (1973).

    Article  ADS  Google Scholar 

  73. J. W. Eastwood, Planet. Space Sci. 20, 1555 (1972).

    Article  ADS  Google Scholar 

  74. O. V. Mingalev, I. V. Mingalev, Kh. V. Malova, and L. M. Zelenyi, Plasma Phys. Rep. 33, 942 (2007).

    Article  ADS  Google Scholar 

  75. A. P. Kropotkin and V. I. Domrin, J. Geophys. Res.: Space Phys. 101, 19893 (1996).

    Article  ADS  Google Scholar 

  76. M. I. Sitnov, L. M. Zelenyi, H. V. Malova, and A. S. Sharma, J. Geophys. Res.: Space Phys. 105, 13029 (2000).

    Article  ADS  Google Scholar 

  77. L. M. Zelenyi, M. I. Sitnov, H. V. Malova, and A. S. Sharma, Nonlinear Processes Geophys. 7, 127 (2000).

    Article  ADS  Google Scholar 

  78. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics (Nauka, Moscow, 1988; Harwood Academic, New York, 1988).

  79. B. U. Ö. Sonnerup, J. Geophys. Res. 76, 8211 (1971).

    Article  ADS  Google Scholar 

  80. J. R. Cary, D. F. Escande, and J. L. Tennyson, Phys. Rev. A 34, 4256 (1986).

    Article  ADS  Google Scholar 

  81. A. I. Neishtadt, Prikl. Mat. Mekh. 51, 750 (1987).

    Google Scholar 

  82. A. T. Y. Lui, J. Geophys. Res.: Space Phys. 98, 13423 (1993).

    Article  ADS  Google Scholar 

  83. H. V. Malova, V. Yu. Popov, E. E. Grigorenko, A. A. Petrukovich, D. Delcourt, A. S. Sharma, O. V. Khabarova, and L. M. Zelenyi, Astrophys. J. 834, 34 (2017). https://doi.org/10.3847/1538-4357/834/1/34

    Article  ADS  Google Scholar 

  84. L. M. Zelenyi, H. V. Malova, V. Yu. Popov, D. Delcourt, and A. S. Sharma, Nonlinear Processes Geophys. 11, 579 (2000).

    Article  ADS  Google Scholar 

  85. L. M. Zelenyi, H. V. Malova, V. Yu. Popov, D. C. Delcourt, and A. S. Sharma, in Multiscale Processes in the Earth’s Magnetosphere: from Interball to Cluster (NATO Science Series II: Mathematics, Physics, and Chemistry), Ed. by J.-A. Sauvaud and Z. Němeček (Kluwer Academic, Dordrecht, 2004), p. 275.

    Google Scholar 

  86. A. A. Petrukovich, A. V. Artemyev, H. V. Malova, R. Nakamura, V. Yu. Popov, and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 116, A00I25 (2011). https://doi.org/10.1029/2010JA015749

  87. L. M. Zelenyi, H. V. Malova, V. Yu. Popov, D. C. Delcourt, N. Yu. Ganushkina, and A. S. Sharma, Geophys. Res. Lett. 33, L05105 (2006). https://doi.org/10.1029/2005GL025117

  88. E. E. Grigorenko, L. M. Zelenyi, G. DiBraccio, V. N. Ermakov, S. D. Shuvalov, H. V. Malova, V. Y. Popov, J. S. Halekas, D. L. Mitchell, and E. Dubinin, Geophys. Res. Lett. 46, 6214 (2019). https://doi.org/10.1029/2019GL082709

    Article  ADS  Google Scholar 

  89. A. Runov, V. A. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Vörös, T. L. Zhang, J.-A. Sauvaud, H. Rème, and A. Balogh, Ann. Geophys. 24, 247 (2006). https://doi.org/10.5194/angeo-24-247-2006

    Article  ADS  Google Scholar 

  90. G. Laval, R. Pellat, and M. Vuillemin, Plasma Phys. Control. Nucl. Fusion Res. 2, 259 (1966).

    ADS  Google Scholar 

  91. A. A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, and H. Rème, J. Geophys. Res.: Space Phys. 112, A10213 (2007). https://doi.org/10.1029/2007JA012349

  92. L. M. Zelenyi, A. P. Kropotkin, V. I. Domrin, A. V. Artem’ev, Kh. V. Malova, and V. Yu. Popov, Kosm. Issled. 47, 388 (2009).

    Google Scholar 

  93. A. L. Taktakishvili, L. M. Zelenyi, E. T. Sarris, R. E. Lopez, and D. V. Sarafopoulos, Planet. Space Sci. 41, 461 (1993). https://doi.org/10.1016/0032-0633(93)90006-N

    Article  ADS  Google Scholar 

  94. M. Ashour-Abdalla, L. M. Zelenyi, V. Peroomian, and R. L. Richard, J. Geophys. Res.: Space Phys. 99, 14891 (1994).

    Article  ADS  Google Scholar 

  95. M. Kistler, C. Mouikis, E. Möbius, B. Klecker, J.‑A. Sauvaud, H. Rème, A. Korth, M. F. Marcucci, R. Lundin, G. K. Parks, and A. Balogh, J. Geophys. Res.: Space Phys. 110, A06213 (2005). https://doi.org/10.1029/2004JA010653

  96. O. L. Vaisberg, L. A. Avanov, J. L. Burch, and J. H. Waite, Adv. Space Res. 8, 63 (1996).

    Article  ADS  Google Scholar 

  97. D. N. Baker, T. I. Pulkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron, J. Geophys. Res.: Space Phys. 101, 12975 (1996).

    Article  ADS  Google Scholar 

  98. V. I. Domrin, Kh. V. Malova, V. Yu. Popov, E. E. Grigorenko, and A. A. Petrukovich, Kosm. Issled. 58, 461 (2020). https://doi.org/10.31857/S0023420620060035

    Article  Google Scholar 

  99. K. Schindler, D. Pfirsch, and H. Wöbig, Plasma Phys. 15, 1165 (1973). https://doi.org/10.1088/0032-1028/15/12/001

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 20-42-04418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. V. Malova.

Additional information

Translated by E. Voronova

This paper summarizes the results of the International conference “Space Plasma Science—Perspectives for Coming Decades” dedicated to the 80th anniversary of academician Albert Abubakirovich Galeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenyi, L.M., Malova, K.V., Popov, V.Y. et al. Albert Galeev: The Problem of Metastability and Explosive Reconnection. Plasma Phys. Rep. 47, 857–877 (2021). https://doi.org/10.1134/S1063780X21090075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21090075

Keywords:

Navigation