Skip to main content

Transport of a Low-Energy Ion Beam with Ballistic Focusing

Abstract—

Transport of an ion beam in a hemispherical equipotential drift space is studied by the PiC method. It is shown that the collector current transfers into a pulsed mode caused by the dynamic processes of the formation of a virtual anode and neutralization of its positive charge by plasma and secondary electrons at the energy of the injected ions of WWc (Wc is the critical energy). The critical energy Wc = 2 keV for an ion current of Ib = 1 А at a gas density of ng = 1013 cm–3. The critical energy and the period of oscillation of the beam current at the collector depend on the ion energy, beam current, and gas density.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Surface Modification and Alloying by Laser, Ion, and Electron Beams, Ed. by J. M. Poate, G. Foti, and D. C. Jacobson (Springer, New York, 2013).

    Google Scholar 

  2. 2

    R. M. Rogov, V. I. Nuzhdin, V. F. Valeev, A. L. Stepanov, A. L. Gumarov, L. R. Tagirov, and I. M. Klimovich, Vacuum 166, 84 (2019).

    ADS  Article  Google Scholar 

  3. 3

    Ion Implantation and Beam Processing, Ed. by J. S. Williams and J. M. Poate (Academic, New York, 2014).

    Google Scholar 

  4. 4

    J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and Ngoc C. Tran, J. Appl. Phys. 62, 4591 (1987).

    Article  Google Scholar 

  5. 5

    Handbook of Plasma Immersion Ion Implantation and Deposition, Ed. by A. Anders (Wiley, New York, 2000).

    Google Scholar 

  6. 6

    N. M. Arbuzov, V.A. Vaulin, G. P. Isaev, O. S. Kuz’min, and A. I. Ryabchikov, SU Patent No. 1412517 (September 7, 1990).

  7. 7

    R. Wei, Surf. Coat. Technol. 83, 218 (1996).

    Article  Google Scholar 

  8. 8

    M. Ueda, H. Reuther, and C. M. Lepienski, Nucl. Instrum. Methods Phys. Res., Sect. B 240, 199 (2005).

    Google Scholar 

  9. 9

    N. V. Gavrilov and A. I. Men’shakov, Tech. Phys. 57, 399 (2012).

    Article  Google Scholar 

  10. 10

    A. I. Ryabchikov, D. O. Sivin, A. E. Shevelev, Y. H. Akhmadeev, O. S. Korneva, A. I. Ivanova, and I. V. Lopatin, Surf. Coat. Technol. 355, 123 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.111

    Article  Google Scholar 

  11. 11

    A. I. Ryabchikov, E. B. Kashkarov, N. S. Pushilina, M. S. Syrtanov, A. E. Shevelev, O. S. Korneva, A. N. Sutygina, and A. M. Lider, Appl. Surf. Sci. 439, 106 (2018). https://doi.org/10.1016/j.apsusc.2018.01.021

    ADS  Article  Google Scholar 

  12. 12

    A. I. Ryabchikov, P. S. Ananin, S. V. Dektyarev, D. O. Sivin, and A. E. Shevelev, Vacuum 143, 447 (2017).

    ADS  Article  Google Scholar 

  13. 13

    A. I. Ryabchikov, A. E. Shevelev, D. O. Sivin, T. V. Koval, and Tran Mi Kim An, J. Appl. Phys. 123, 233301 (2018). https://doi.org/10.1063/1.5034082

  14. 14

    T. V. Koval Koval’, Ch. M. K. An, and V. P. Tarakanov, Izv. Ross. Akad. Nauk, Ser. Fiz. 83, 1524 (2019). https://doi.org/10.1134/S0367676519110140

    Article  Google Scholar 

  15. 15

    A. I. Ryabchikov, A. E. Shevelev, D. O. Sivin, S. V. Dek-tyarev, and O. S. Korneva, Izv. VUZOV, Fiz., No. 10, 54 (2020).

  16. 16

    V. I. Farenik, Fiz. Inzh. Poverkhn. 3, 4 (2005).

    Google Scholar 

  17. 17

    S. V. Dudin, A. V. Zykov, and V. I. Farenik, Rev. Sci. Instrum. 65, 1451 (1994).

    ADS  Article  Google Scholar 

  18. 18

    A. V. Zykov, N. B. Marushchenko, and V. I. Farenik, Sov. Tech. Phys. Lett. 15, 332 (1989).

    Google Scholar 

  19. 19

    V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).

    Google Scholar 

  20. 20

    V. P. Tarakanov, in Mathematical Modeling: Problems and Results, Ed. by O. M. Belotserkovskii and V. A. Gushchin (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  21. 21

    D. B. Medved and Y. E. Shtrausser, Adv. Electron. Electron Phys. 21, 101 (1965).

    Article  Google Scholar 

  22. 22

    M. Shamim, J. T. Scheuer, R. P. Fetherston, and J. R. Conrad, J. Appl. Phys. 70, 4756 (1991).

    ADS  Article  Google Scholar 

  23. 23

    E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964).

    Google Scholar 

  24. 24

    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  25. 25

    T. V. Koval’, V. V. Ofitserov, D. S. Obukhov, and A. L. Marchenko, Vestn. Nauki Sibiri 3 (4), 16 (2012).

    Google Scholar 

  26. 26

    I. Langmuir and K. B. Blodgett, Phys. Rev. 22, 347 (1923).

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-19-01169-P) and by Ministry of Science and Higher Education of the Russian Federation, project 075-15-2020-790.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. Koval’.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koval’, T.V., Tarakanov, V.P. Transport of a Low-Energy Ion Beam with Ballistic Focusing. Plasma Phys. Rep. 47, 840–849 (2021). https://doi.org/10.1134/S1063780X21080079

Download citation

Keywords:

  • ion beam
  • virtual anode
  • transport
  • ballistic focusing
  • PiC simulation