Skip to main content

The Possibility of Tritium Self-Sufficiency in a Fusion Reactor


Based on modern data, analysis was carried out of the possibility of tritium self-sufficiency in a fusion D–T reactor. Taking into account the real losses of the tritium isotope during the operation of the reactor shows that at modern technologies and results of materials science studies, the self-sufficiency is impossible even at the maximum tritium breeding ratio \({{K}_{{\text{T}}}} = 1.9\).

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. 1

    C. L. Smith and S. Cowley, Philos. Trans. R. Soc., A 368 (1914), 1091 (2010).

  2. 2

    B. Nie, G. Ran, and Q. Zeng, H. Du, Z. Li, Y. Chen, Z. Zhu, X. Zhao, M. Ni, and F. Li, Energy Sci. Eng. 7, 457 (2019).

    Article  Google Scholar 

  3. 3

    R. P. Doerner, G. R. Tynan, and K. Schmid, Nucl. Mater. Energy 18, 56 (2019).

    Article  Google Scholar 

  4. 4

    B. B. Kadomtsev and V. V. Orlov, Advances in Science and Technology, Ser. Plasma Physics, Ed. by V. D. Shafranov (VINITI, Moscow, 1985), Vol. 6, p. 5 [in Russian].

    Google Scholar 

  5. 5

    B. Soltani and M. Habib, J. Fusion Energy 34, 604 (2015).

    Article  Google Scholar 

  6. 6

    A. Loarte and D. Campbell, Paper presented at the “4th IAEA DEMO Programme Workshop,” Karlsruhe, 2016.

  7. 7

    G. L. Jackson, V. S. Chan, and R. D. Stambaugh, Fusion Sci. Technol. 64, 8 (2013).

    Article  Google Scholar 

  8. 8

    M. Indah Rosidah, Z. Suud, and P. I. Yazid, AIP Conf. Proc. 1677, 070021 (2015).

  9. 9

    K. Tobita, S. Nishio, A. Saito, M. Enoeda, C. Liu, H. Tanigavwa, S. Sato, D. Tsuru, T. Hirose, Y. Seki, and M. Yamada, in Proceedings of the 18th International Toki Conference, Toki, 2008, Paper P1-43.

  10. 10

    D. Jassby, Bull. At. Sci., February 14, 2018.

  11. 11

    M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I. R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, Fusion Eng. Des. 82, 472 (2007).

    Article  Google Scholar 

  12. 12

    G. Federici, L. Boccaccini, F. Cismondi, M. Gasparotto, Y. Poitevin, and I. Ricapito, Fusion Eng. Des. 141, 30 (2019).

    Article  Google Scholar 

  13. 13

    V. D’Auria, S. Dulla, P. Ravetto, L. Savoldi, M. Utili, and R. Zanino, Fusion Sci. Technol. 71, 537 (2017).

    Article  Google Scholar 

  14. 14

    B. Garcinuño, D. Rapisarda, R. Antunes, M. Utili, I. Fernándes-Berceruelo, J. Sans, and Á. Ibarra, Nucl. Fusion 58, 095002 (2018).

  15. 15

    K. M. Feng, C. H. Pan, G. S. Zang, T. Yuan, Z. Chen, Z. Zhao, H. B. Liu, Z. Q. Li, G. Hu, X. Y. Wang, X. F. Ye, D. L. Luo, H. Y. Wang, Z. W. Zhou, C. V. Gao, et al., Fusion Eng. Des. 83, 1149 (2008).

    Article  Google Scholar 

  16. 16

    S. S. Anan’ev, A. V. Spitsyn, and B. V. Kuteev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 37 (4), 11 (2014).

    Google Scholar 

  17. 17

    A. Loarte, B. Lipschultz, A. S. Kukushkin, G. F. Matthews, P. C. Stangeby, N. Asakura, G. F. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, et al., Nucl. Fusion 47, S203 (2007).

    Article  Google Scholar 

  18. 18

    M. J. Gouge, K. D. St. Onge, S. L. Milora, P. W. Fisher, and S. K. Combs, Fusion Eng. Des. 19, 53 (1992).

    Article  Google Scholar 

  19. 19

    P. Roychowdhury and D. P. Chakravarthy, Rev. Sci. Instrum. 80, 12330 (2009).

    Article  Google Scholar 

  20. 20

    L. P. Veresov and O. L. Veresov, Tech. Phys. 48, 1338 (2003).

    Article  Google Scholar 

  21. 21

    Y. Takeiri, Rev. Sci. Instrum. 81, 02B114 (2010).

  22. 22

    Y. Okumura, Y. Fujiwara, M. Kashiwagi, T. Kitagava, K. Miyamoto, T. Morishita, M. Hanada, T. Takayanagi, M. Taniguchi, and T. Watanabe, Rev. Sci. Instrum. 71, 1219 (2000).

    ADS  Article  Google Scholar 

  23. 23

    N. N. Semashko, A. N. Vladimirov, V. V. Kuznetsov, V. M. Kulygin, and V. V. Panasenkov, Injectors of Fast Hydrogen Atoms (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  24. 24

    L. A. El-Guebaly and S. Malang, Fusion Eng. Des. 84, 2072 (2009).

    Article  Google Scholar 

  25. 25

    Yu. V. Gott, Instrum. Exp. Tech. 48, 423 (2005).

    Article  Google Scholar 

  26. 26

    M. Kikuchi and M. Azumi, Frontiers in Fusion Research II. Introduction to Modern Tokamak Physics (Springer International Publishing Switzerland, Heidelberg, 2015), p. 56.

    Google Scholar 

  27. 27

    R. Reichle, P. Andrev, P. Bates, O. Bede, N. Casal, C. H. Choi, R. Barnsley, C. Damiani, L. Bertalot, G. Dubus, J. Ferreol, G. Jagannathan, M. Kocan, F. Leilpold, S. W. Lisgo, et al., J. Nucl. Mater. 463, 80 (2015).

    Article  Google Scholar 

  28. 28

    F. Romanelli and JET EFDA Contributors, Nucl. Fusion 53, 104002 (2013).

  29. 29

    K. Schmid, K. Krieger, S. W. Lisgo, G. Meisl, S. Brezinsek, and JET EFDA Contributors, J. Nucl. Mater. 463, 66 (2015).

    ADS  Article  Google Scholar 

  30. 30

    P. W. Humrickhouse, B. J. Merill, S.-J. Yoon, and L. C. Cadwallader, Fusion Sci. Technol. 75, 973 (2019).

    Article  Google Scholar 

  31. 31

    M. Abdou, D. Sze, C. Wong, M. Sawan, A. Ying, N. B. Morley, and S. Malang, Fusion Sci. Technol. 47, 475 (2005).

    Article  Google Scholar 

  32. 32

    P. Batistoni, J. Likonen, N. Bekris, S. Brezinsek, P. Coad, L. Horton, G. Matthews, M. Rubel, G. Sips, B. Syme, A. Widdowsone, and EFDA-JET Contributors, Fusion Eng. Des. 89, 896 (2014).

    Article  Google Scholar 

Download references


The author is profoundly grateful to V.I. Ilgisonis for useful advice and discussions.

Author information



Corresponding author

Correspondence to Yu. V. Gott.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gott, Y.V. The Possibility of Tritium Self-Sufficiency in a Fusion Reactor. Plasma Phys. Rep. 47, 781–785 (2021).

Download citation


  • tritium
  • fusion reactor
  • tritium breeding ratio
  • self-sufficiency