Skip to main content

The Possibility of Tritium Self-Sufficiency in a Fusion Reactor

Abstract—

Based on modern data, analysis was carried out of the possibility of tritium self-sufficiency in a fusion D–T reactor. Taking into account the real losses of the tritium isotope during the operation of the reactor shows that at modern technologies and results of materials science studies, the self-sufficiency is impossible even at the maximum tritium breeding ratio \({{K}_{{\text{T}}}} = 1.9\).

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    C. L. Smith and S. Cowley, Philos. Trans. R. Soc., A 368 (1914), 1091 (2010). https://doi.org/10.1098/rsta.2009.0216

  2. 2

    B. Nie, G. Ran, and Q. Zeng, H. Du, Z. Li, Y. Chen, Z. Zhu, X. Zhao, M. Ni, and F. Li, Energy Sci. Eng. 7, 457 (2019). https://doi.org/10.1002/ese3.291

    Article  Google Scholar 

  3. 3

    R. P. Doerner, G. R. Tynan, and K. Schmid, Nucl. Mater. Energy 18, 56 (2019). https://doi.org/10.1016/j.nme.2018.12.006

    Article  Google Scholar 

  4. 4

    B. B. Kadomtsev and V. V. Orlov, Advances in Science and Technology, Ser. Plasma Physics, Ed. by V. D. Shafranov (VINITI, Moscow, 1985), Vol. 6, p. 5 [in Russian].

    Google Scholar 

  5. 5

    B. Soltani and M. Habib, J. Fusion Energy 34, 604 (2015). https://doi.org/10.1007/s10894-015-9847-1

    Article  Google Scholar 

  6. 6

    A. Loarte and D. Campbell, Paper presented at the “4th IAEA DEMO Programme Workshop,” Karlsruhe, 2016. https://nucleus.iaea.org/sites/fusionportal/Technical%20Meeting%20Proceedings/4th%20DEMO/website/talks/November%2015%20Sessions/Loarte.pdf.

  7. 7

    G. L. Jackson, V. S. Chan, and R. D. Stambaugh, Fusion Sci. Technol. 64, 8 (2013). https://doi.org/10.13182/FST13-A17042

    Article  Google Scholar 

  8. 8

    M. Indah Rosidah, Z. Suud, and P. I. Yazid, AIP Conf. Proc. 1677, 070021 (2015). https://doi.org/10.1063/1.4930725

  9. 9

    K. Tobita, S. Nishio, A. Saito, M. Enoeda, C. Liu, H. Tanigavwa, S. Sato, D. Tsuru, T. Hirose, Y. Seki, and M. Yamada, in Proceedings of the 18th International Toki Conference, Toki, 2008, Paper P1-43. https://www.nifs.ac.jp/itc/itc18/upload/proceedings_upload/proc_P1-43_Tobita.pdf.

  10. 10

    D. Jassby, Bull. At. Sci., February 14, 2018. https://thebulletin.org/2018/02/iter-is-a-showcase-for-the-drawbacks-of-fusion-energy.

  11. 11

    M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I. R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, Fusion Eng. Des. 82, 472 (2007). https://doi.org/10.1016/j.fusengdes.2007.02.025

    Article  Google Scholar 

  12. 12

    G. Federici, L. Boccaccini, F. Cismondi, M. Gasparotto, Y. Poitevin, and I. Ricapito, Fusion Eng. Des. 141, 30 (2019). https://doi.org/10.1016/j.fusengdes.2019.01.141

    Article  Google Scholar 

  13. 13

    V. D’Auria, S. Dulla, P. Ravetto, L. Savoldi, M. Utili, and R. Zanino, Fusion Sci. Technol. 71, 537 (2017). https://doi.org/10.1080//15361055.2017.1291252

    Article  Google Scholar 

  14. 14

    B. Garcinuño, D. Rapisarda, R. Antunes, M. Utili, I. Fernándes-Berceruelo, J. Sans, and Á. Ibarra, Nucl. Fusion 58, 095002 (2018). https://doi.org/10.1088/1741-4326/aacb89

  15. 15

    K. M. Feng, C. H. Pan, G. S. Zang, T. Yuan, Z. Chen, Z. Zhao, H. B. Liu, Z. Q. Li, G. Hu, X. Y. Wang, X. F. Ye, D. L. Luo, H. Y. Wang, Z. W. Zhou, C. V. Gao, et al., Fusion Eng. Des. 83, 1149 (2008). https://doi.org/10.1016/j.fusengdes.2008.06.010

    Article  Google Scholar 

  16. 16

    S. S. Anan’ev, A. V. Spitsyn, and B. V. Kuteev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 37 (4), 11 (2014).

    Google Scholar 

  17. 17

    A. Loarte, B. Lipschultz, A. S. Kukushkin, G. F. Matthews, P. C. Stangeby, N. Asakura, G. F. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, et al., Nucl. Fusion 47, S203 (2007). https://doi.org/10.1088/0029-5515/47/6/S04

    Article  Google Scholar 

  18. 18

    M. J. Gouge, K. D. St. Onge, S. L. Milora, P. W. Fisher, and S. K. Combs, Fusion Eng. Des. 19, 53 (1992). https://doi.org/10.1016/0920-3796(92)90063-A

    Article  Google Scholar 

  19. 19

    P. Roychowdhury and D. P. Chakravarthy, Rev. Sci. Instrum. 80, 12330 (2009). https://doi.org/10.1063/1.3272786

    Article  Google Scholar 

  20. 20

    L. P. Veresov and O. L. Veresov, Tech. Phys. 48, 1338 (2003).

    Article  Google Scholar 

  21. 21

    Y. Takeiri, Rev. Sci. Instrum. 81, 02B114 (2010). https://doi.org/10.1063/1.3274806

  22. 22

    Y. Okumura, Y. Fujiwara, M. Kashiwagi, T. Kitagava, K. Miyamoto, T. Morishita, M. Hanada, T. Takayanagi, M. Taniguchi, and T. Watanabe, Rev. Sci. Instrum. 71, 1219 (2000). https://doi.org/10.1063/1.1150432

    ADS  Article  Google Scholar 

  23. 23

    N. N. Semashko, A. N. Vladimirov, V. V. Kuznetsov, V. M. Kulygin, and V. V. Panasenkov, Injectors of Fast Hydrogen Atoms (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  24. 24

    L. A. El-Guebaly and S. Malang, Fusion Eng. Des. 84, 2072 (2009). https://doi.org/10.1016/j.fusengdes.2008.12.098

    Article  Google Scholar 

  25. 25

    Yu. V. Gott, Instrum. Exp. Tech. 48, 423 (2005).

    Article  Google Scholar 

  26. 26

    M. Kikuchi and M. Azumi, Frontiers in Fusion Research II. Introduction to Modern Tokamak Physics (Springer International Publishing Switzerland, Heidelberg, 2015), p. 56.

    Google Scholar 

  27. 27

    R. Reichle, P. Andrev, P. Bates, O. Bede, N. Casal, C. H. Choi, R. Barnsley, C. Damiani, L. Bertalot, G. Dubus, J. Ferreol, G. Jagannathan, M. Kocan, F. Leilpold, S. W. Lisgo, et al., J. Nucl. Mater. 463, 80 (2015). https://doi.org/10.1016/j.jnucmat.2015.01.039

    Article  Google Scholar 

  28. 28

    F. Romanelli and JET EFDA Contributors, Nucl. Fusion 53, 104002 (2013). https://doi.org/10.1088/0029-5515/53/10/104002

  29. 29

    K. Schmid, K. Krieger, S. W. Lisgo, G. Meisl, S. Brezinsek, and JET EFDA Contributors, J. Nucl. Mater. 463, 66 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.109

    ADS  Article  Google Scholar 

  30. 30

    P. W. Humrickhouse, B. J. Merill, S.-J. Yoon, and L. C. Cadwallader, Fusion Sci. Technol. 75, 973 (2019). https://doi.org/10.1080/15361055.2019.1658464

    Article  Google Scholar 

  31. 31

    M. Abdou, D. Sze, C. Wong, M. Sawan, A. Ying, N. B. Morley, and S. Malang, Fusion Sci. Technol. 47, 475 (2005). https://doi.org/10.13182/FST05-A732

    Article  Google Scholar 

  32. 32

    P. Batistoni, J. Likonen, N. Bekris, S. Brezinsek, P. Coad, L. Horton, G. Matthews, M. Rubel, G. Sips, B. Syme, A. Widdowsone, and EFDA-JET Contributors, Fusion Eng. Des. 89, 896 (2014). https://doi.org/10.1016/j.fusengdes.2013.12.050

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is profoundly grateful to V.I. Ilgisonis for useful advice and discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gott.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gott, Y.V. The Possibility of Tritium Self-Sufficiency in a Fusion Reactor. Plasma Phys. Rep. 47, 781–785 (2021). https://doi.org/10.1134/S1063780X21080043

Download citation

Keywords:

  • tritium
  • fusion reactor
  • tritium breeding ratio
  • self-sufficiency