Skip to main content

Study of Distribution of the Electric Field in a Plasma Chamber with Slot Input of Microwave Energy

Abstract

Some types of the slot input of high energy into cylindrical and rectangular cavities are considered. The energy input through slot waveguiding apertures located at the central circle of the cavity is selected and optimized. The standing wave ratio of the system is determined. The change in the electrical field energy in the cavity, when the position of the slot waveguide is shifted, is simulated. The optimum (best for processing with microwave discharge plasma) positions of the objects and waveguide slots as well as critical positions (choosing which can put the oscillator out of action) are shown. The increase in the field density between two metallic objects is calculated. The results demonstrating the inacceptable way of the slot input of energy for solving some types of problems related to processing of complex surfaces with the microwave discharge are obtained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Yu. A. Lebedev, Plasma Sources Sci. Technol. 24, 053001 (2015).

  2. 2

    Microwave Discharges: Fundamentals and Applications, Ed. by C. M. Ferreira and M. Moisan (Plenum, New York, 1993).

    Google Scholar 

  3. 3

    M. Baeva, A. Bösel, J. Ehlbeck, and D. Loffhagen, Phys. Rev. 85, 056404 (2012).

  4. 4

    B. M. Brzhozovskii, N. S. Azikov, V. V. Martynov, and E. P. Zinina, J. Phys.: Conf. Ser. 1281, 012006 (2019).

  5. 5

    B. Brzhozovskii, M. Brovkova, S. Gestrin, V. Martynov, and E. Zinina, J. Phys. D: Appl. Phys. 51, 145204 (2018).

  6. 6

    B. Brzhozovskii, M. Brovkova, S. Gestrin, V. Martynov, and E. Zinina, J. Phys. D: Appl. Phys. 52, 485202 (2019).

  7. 7

    M. V. Davidovich and V. V. Yavchunovskii, Vopr. Prikl. Fiz., No. 10, 49 (2004).

  8. 8

    Y. Jiang et al., in Proceedings of the 20th International Vacuum Electronics Conference, Busan, 2019.

  9. 9

    O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983).

    MATH  Google Scholar 

  10. 10

    J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, New York, 1998).

    Book  Google Scholar 

  11. 11

    D. Korzec, F. Werner, R. Winter, and J. Engemann, Plasma Sources Sci. Technol. 5, 216 (1996).

    ADS  Article  Google Scholar 

  12. 12

    M. Moisan, Z. Zakrzewski, R. Grenier, and G. Sauvé, J. Microwave Power Electromagn. Energy 30, 58 (1995).

    Article  Google Scholar 

  13. 13

    J. Margot and M. Moisan, in Microwave Exited Plasmas, Ed. by M. Moisan and J. Pelletier (Elsevier, Amsterdam, 1992).

    Google Scholar 

  14. 14

    F. Liu, J. Wang, and S. Dai, Int. J. Numer. Modell.: Electron. Networks, Devices, Fields 24, 526 (2011).

    Google Scholar 

  15. 15

    G. T. Markov, B. M. Petrov, and G. T. Grudinskaya, Electrodynamics and Radio Wave Propagation (Sovetskoe Radio, Moscow, 1969) [in Russian].

  16. 16

    L. A. Vainshtein, Diffraction Theory and Factorization Method (Sovetskoe radio, Moscow, 1966) [in Russian].

  17. 17

    COMSOL Plasma Module. https://www.comsol.ru/plasma-module. Cited February 10, 2021.

  18. 18

    J. Brcka, in Proceedings of the COMSOL Users Conference 2006, Boston, 2006. http://public.cntech.com.cn/Public/Uploads/ckfinder/userfiles/files/Modeling%20Remote%20H2%20Plasma%20in%20a%20Semiconductor%20Processing%20Tool%201.pdf.

  19. 19

    E. Turkoz and M. Çelik, J. Comput. Phys. 286, 87 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Yu. V. Gulyaev and R. K. Yafarov, Zarubezhn. Elektron. Tekh., No. 1, 77 (1997).

  21. 21

    D. A. Usanov and R. K. Yafarov, Investigation of Excitation Efficiency and Uniformity of Waveguide-Resonator Microwave Devices for Vacuum-Plasma Material Processing Using Large-Format Carriers (Izd. Saratovsk. Gos. Univ., Saratov, 2013) [in Russian].

    Google Scholar 

  22. 22

    V. F. Michaylov, T. N. Naritnik, I. V. Bragin, and V. N. Moshkin, Microwave Technologies in Telecommunication Systems (Izd. St.-Peterburg. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 19-19-00101).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to B. M. Brzhozovskii or S. Yu. Molchanov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brzhozovskii, B.M., Martynov, V.V., Molchanov, S.Y. et al. Study of Distribution of the Electric Field in a Plasma Chamber with Slot Input of Microwave Energy. Plasma Phys. Rep. 47, 850–856 (2021). https://doi.org/10.1134/S1063780X2108002X

Download citation

Keywords:

  • microwave discharge
  • low-temperature plasma
  • mathematical simulation
  • slot waveguide