Skip to main content
Log in

The Effect of Gas Heating on the Decay of Plasma with Hydrated Ions after a High-Voltage Nanosecond Discharge

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

In this paper, plasma decay in the afterglow of a high-voltage nanosecond discharge in Н2О : О2 gas mixtures at temperatures from 300 to 600 K and pressures from 2 to 6 Torr is studied experimentally and theoretically. The time behavior of the electron density during plasma decay is measured in the range from 2 × 1012 to 1011 cm–3 using microwave interferometry. The effective coefficients of electron–ion recombination are obtained by processing the experimental data. These coefficients considerably exceed the recombination coefficients of simple ions; they increase with time and pressure during the plasma decay and decrease when gas is heated. Numerical simulations of the plasma decay kinetics in Н2О : О2 mixtures are performed in the zero-dimensional approximation taking into account the mixture heating and variations of the plasma ionic composition in the discharge afterglow. The calculations show that the relations obtained within the experiment are associated with the formation of hydrated ions in the discharge afterglow. The recombination with hydrated ions is more efficient than with simple molecular ions. The analysis of the calculation results suggests that the gas heating effect on plasma decay is determined primarily by the slowdown of complex hydrated ion production and, to a lesser extent, by the decrease in the coefficients of electron recombination with specific ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Fridman, Plasma Chemistry (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  2. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combast. Sci. 39, 61 (2013).

    Article  Google Scholar 

  3. S. M. Starikovskaia, J. Phys. D: Appl. Phys. 47, 353001 (2014).

  4. Y. Ju and W. Sun, Prog. Energy Combast. Sci. 48, 21 (2015).

    Article  Google Scholar 

  5. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).

  6. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016).

  7. S. V. Avtaeva, A. A. General, and V. A. Kel’man, J. Phys. D: Appl. Phys. 43, 315201 (2010).

  8. A. A. Ponomarev and N. L. Aleksandrov, J. Phys.: Conf. Ser. 927, 012044 (2017).

  9. A. A. Ponomarev and N. L. Aleksandrov, Plasma Phys. Rep. 44, 986 (2018).

    Article  ADS  Google Scholar 

  10. L. W. Sieck, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 20, 235 (2000).

    Article  Google Scholar 

  11. I. A. Soloshenko, V. V. Tsiolko, S. S. Pogulay, A. G. Kalyuzhnaya, V. Yu. Bazhenov, and A. I. Shchedrin, Plasma Sources Sci. Technol. 18, 045019 (2009).

  12. A. V. Filippov, I. N. Derbenev, N. A. Dyatko, S. A. Kurkin, G. B. Lopantseva, A. F. Pal’, and A. N. Starostin, J. Exp. Theor. Phys. 125, 246 (2017).

    Article  ADS  Google Scholar 

  13. I. Gallimberti, Pure Appl. Chem. 60, 663 (1988).

    Article  Google Scholar 

  14. D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010).

  15. T. Murakami, K. Niemi, T. Gans, D. O' Connell, and W. G. Graham, Plasma Sources Sci. Technol. 22, 015003 (2013).

  16. A. Tavant and M. A. Lieberman, J. Phys. D: Appl. Phys. 49, 465201 (2016).

  17. D. Liu, B. Sun, F. Iza, D. Xu, X. Wang, M. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 26, 045009 (2017).

  18. W. Van Gaens and A. Bogaerts, J. Phys. D: Appl. Phys. 46, 275201 (2013).

  19. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  20. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  21. M. T. Leu, M. A. Biondi, and R. Johnsen, Phys. Rev. A 7, 292 (1973).

    Article  ADS  Google Scholar 

  22. C.-M. Huang, M. Whitaker, M. A. Biondi, and R. Johnsen, Phys. Rev. A 18, 64 (1978).

    Article  ADS  Google Scholar 

  23. R. Johnsen, J. Chem. Phys. 98, 5390 (1993).

    Article  ADS  Google Scholar 

  24. M. A. Popov, I. V. Kochetov, A. Yu. Starikovskiy, and N. L. Aleksandrov, J. Phys. D: Appl. Phys. 51, 264003 (2018).

  25. M. B. Någård, J. B. C. Pettersson, A. M. Derkatch, A. Al Khalili, A. Neau, S. Rosén, M. Larsson, J. Semaniak, H. Danared, A. Källberg, F. Österdahl, and M. af Ugglas, J. Chem. Phys. 117, 5264 (2002).

    Article  ADS  Google Scholar 

  26. J. Öjekull, P. U. Andersson, M. B. Någård, J. B. C. Pettersson, N. Marković, A. M. Derkatch, A. Neau, A. Al Khalili, S. Rosén, M. Larsson, J. Semaniak, H. Danared, A. Källberg, F. Österdahl, and M. af Ugglas, J. Chem. Phys. 127, 194301 (2007).

  27. J. Öjekull, P. U. Andersson, J. B. C. Pettersson, N. Marković, R. D. Thomas, A. Al Khalili, A. Ehlerding, F. Österdahl, M. af Ugglas, M. Larsson, H. Danared, and A. Källberg, J. Chem. Phys. 128, 044311 (2007).

  28. N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, S. V. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D: Appl. Phys. 40, 4493 (2007).

    Article  ADS  Google Scholar 

  29. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 38, 179 (2012).

    Article  ADS  Google Scholar 

  30. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaia, and A. Y. Starikovskii, J. Phys. D: Appl. Phys. 45, 255202 (2012).

  31. E. M. Anokhin, M. A. Popov, I. V. Kochetov, N. L. Aleksandrov, and A. Yu. Starikovskii, Plasma Phys. Rep. 42, 59 (2016).

    Article  ADS  Google Scholar 

  32. E. M. Anokhin, M. A. Popov, I. V. Kochetov, A. Yu. Starikovskiy, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 25, 044006 (2016).

  33. E. M. Anokhin, M. A. Popov, I. V. Kochetov, A. Yu. Starikovskii, and N. L. Aleksandrov, Plasma Phys. Rep. 43, 1198 (2017).

    Article  ADS  Google Scholar 

  34. M. A. Popov, E. M. Anokhin, A. Yu. Starikovskiy, and N. L. Aleksandrov, Combust. Flame 219, 393 (2020).

    Article  Google Scholar 

  35. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Book  Google Scholar 

  36. T. Kotrík, P. Dohnal, S. Roučka, P. Jusko, R. Plašil, J. Glosík, and R. Johnsen, Phys. Rev. A: At., Mol., Opt. Phys. 83, 032720 (2011).

  37. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).

    Article  ADS  Google Scholar 

  38. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  ADS  Google Scholar 

  39. M. Larsson and A. E. Orel, Dissociative Recombination of Molecular Ions (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  40. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, EEDF: the Software Package for Calculations of the Electron Energy Distribution Function in Gas Mixtures. http://www.lxcat.laplace.univ-tlse.fr/software/EEDF/. Cited February 4, 2021.

  41. I. V. Kochetov and N. L. Aleksandrov, Plasma Sources Sci. Technol. 27, 115004 (2018).

  42. F. C. Fehsenfeld, M. Mosesman, and E. E. Ferguson, J. Chem. Phys. 55, 2115 (1971).

    Article  ADS  Google Scholar 

  43. D. McElroy, C. Walsh, A. J. Markwick, M. A. Cordiner, K. Smith, and T. J. Millar, Astron. Astrophys. 550, A36 (2013);

    Article  ADS  Google Scholar 

  44. The UMIST Database for Asrochemistry 2012. http://udfa.ajmarkwick.net. Cited February 4, 2021.

  45. M. Meot-Ner and F. H. Field, J. Am. Chem. Soc. 99, 998 (1977).

    Article  Google Scholar 

  46. A. J. Cunningham and R. M. Hobson, J. Phys. B: At. Mol. Phys. 5, 2320 (1972).

    Article  ADS  Google Scholar 

  47. E. S. Sennhauser, D. A. Armstrong, and J. M. Warman, Radiat. Phys. Chem. 15, 479 (1980).

    ADS  Google Scholar 

  48. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  49. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).

    Google Scholar 

  50. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-32-90012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, M.A., Anokhin, E.M., Kochetov, I.V. et al. The Effect of Gas Heating on the Decay of Plasma with Hydrated Ions after a High-Voltage Nanosecond Discharge. Plasma Phys. Rep. 47, 742–751 (2021). https://doi.org/10.1134/S1063780X21070138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21070138

Keywords:

Navigation