Skip to main content
Log in

X-Ray Trapping and Bursts in a Complex Plasma of Nanosecond Vacuum Discharge

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effect of partial “trapping” of X-ray quanta with energies less than or on the order of 10 keV by the interelectrode polydisperse medium of a nanosecond vacuum discharge (NVD) with a virtual cathode, which is sometimes accompanied by high-intensity bursts of X-ray radiation, is presented and discussed. A model of diffusion and release of X-rays in an NVD based on the solution of the equation for the flux of quanta in a scattering and absorbing interelectrode medium is proposed. The results of the presented model are compared with the scheme of a stochastic laser proposed by V.S. Letokhov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Schoenlein, Th. Elsaesser, K. Holldack, Z. Huang, H. Kapteyn, M. Murnane, and M. Woerner, Philos. Trans. R. Soc. A 377, 20180384 (2019). https://doi.org/10.1098/rsta.2018.0384

  2. R. C. Elton, X-rays Lasers (Academic, San Diego, 1990).

    Google Scholar 

  3. V. S. Letokhov, Sov. Phys.–JETP 26, 835 (1968).

    ADS  Google Scholar 

  4. D. S. Wiersma, Nat. Phys. 4, 359 (2008).

    Article  Google Scholar 

  5. H. Cao, J. Phys. A: Math. Gen. 38, 10497 (2005).

    Article  ADS  Google Scholar 

  6. M. Noginov, Solid State Random Lasers (Springer-Verlag, New York, 2005).

    Google Scholar 

  7. G. H. Miley and S. K. Murali, Inertial Electrostatic Confinement (IEC) Fusion (Springer-Verlag, New York, 2014).

    Book  Google Scholar 

  8. O. A. Lavrent’ev, On the History of Thermonuclear Fusion in USSR, 2nd ed. (Kharkov Phys.-Tech. Inst., Kharkov, 2012) [in Russian].

    Google Scholar 

  9. W. C. Elmore, J. L. Tuck, and K. M. Watson, Phys. Fluids 2, 239 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yu. K. Kurilenkov, M. Skowronek, and J. Dufty, J. Phys. A: Math. Gen. 39, 4375 (2006).

    Article  ADS  Google Scholar 

  11. Yu. K. Kurilenkov, V. P. Tarakahov, and S. Yu. Gus’kov, Plasma Phys. Rep. 36, 1227 (2010).

    Article  ADS  Google Scholar 

  12. Yu. K. Kurilenkov, V. P. Tarakanov, V. T. Karpukhin, S. Yu. Gus’kov, and A. V. Oginov, J. Phys.: Conf. Ser. 653, 012025 (2015).

  13. Yu. K. Kurilenkov, V. P. Tarakanov, S. Yu. Gus’kov, I. S. Samoylov, and V. E. Ostashev, J. Phys.: Conf. Ser. 653, 012026 (2015).

  14. Y. K. Kurilenkov, V. P. Tarakanov, S. Y. Gus’kov, A. V. Oginov, and V. T. Karpukhin, Contrib. Plasma Phys. 58, 952 (2018).

    Article  ADS  Google Scholar 

  15. Yu. K. Kurilenkov, V. P. Tarakanov, S. Yu. Gus’kov, A. V. Oginov, and I. S. Samoylov, J. Phys.: Conf. Ser. 1147, 012103 (2019).

  16. V. S. Letokhov, Quantum Electron. 32, 1065 (2002).

    Article  ADS  Google Scholar 

  17. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature 368, 436 (1994).

    Article  ADS  Google Scholar 

  18. H. Cao, Opt. Photonics News 16, 24 (2005).

    Article  ADS  Google Scholar 

  19. D. S. Wiersma, Nat. Phys. 4, 359 (2008).

    Article  Google Scholar 

  20. H. Cao, presented at the Workshop on Coherent Phenomena in Disordered Optical Systems (International Centre for Theoretical Physics, Trieste, 2014). Paper 2583-14.

  21. M. Suleiman, C. Borchers, M. Guerdane, N. M. Jisrawi, D. Fritsch, R. Kirchheim, and A. Pundt, Z. Phys. Chem. 223, 169 (2009).

    Article  Google Scholar 

  22. I. V. Smetanin, Yu. K. Kurilenkov, A. V. Oginov, and I. S. Samoylov, J. Russ. Laser Res. 41, 608 (2020).

    Article  Google Scholar 

  23. J. Huang, M. M. Morshed, Z. Zuo, and J. Liu, Appl. Phys. Lett. 104, 131107 (2014).

  24. K. Vegso, P. Siffalovic, M. Benkovicova, M. Jergel, S. Luby, E. Majkova, I. Capek, T. Kocsis, J. Perlich, and S. V. Roth, Nanotechnology 23, 045704 (2012).

  25. L. Chitu, P. Siffalovic, E. Majkova, M. Jergel, K. Vegso, S. Luby, I. Capek, A. Satka, J. Perlich, A. Timmann, S. V. Roth, J. Keckes, and G. A. Maier, Meas. Sci. Rev. 10, 162 (2010).

    Article  Google Scholar 

  26. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, Phys. Rep. 542, 133 (2014).

    Article  ADS  Google Scholar 

  27. X. Du, H. Zhang, H. Xiao, P. Ma, X. Wang, P. Zhou, and Z. Liu, Ann. Phys. 52, 649 (2016).

    Article  Google Scholar 

  28. A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Chicago Univ. Press, Chicago, IL, 1958).

    Google Scholar 

  29. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  30. M. A. Blokhin and I. G. Shveitser, Handbook of X-ray Spectroscopy (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  31. L. Halperin, Rev. Mod. Phys. 58, 533 (1986).

    Article  ADS  Google Scholar 

  32. Yu. P. Petrov, Clusters and Small Particles (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  33. A. S. A. Mohammed, A. Carino, A. Testino, M. R. Andalibi, and A. Cervellino, J. Appl. Crystallogr. 52, 344 (2019).

    Article  Google Scholar 

  34. P. A. Ross, Phys. Rev. 28, 425 (1926).

    Article  Google Scholar 

  35. A. V. Oginov, Yu. K. Kurilenkov, I. S. Samoylov, K. V. Shpakov, A. A. Rodionov, and V. T. Karpukhin, J. Phys.: Conf. Ser. 1147, 012081 (2019).

  36. I. V. Smetanin, Yu. K. Kurilenkov, A. V. Oginov, V. P. Tarakanov, and I. S. Samoylov, Plasma Res. Express 3, 015003 (2021).

  37. A. Yu. Varaksin, High Temp. 58, 716 (2020).

  38. M. Noginov, Solid State Random Lasers (Springer-Verlag, New York, 2005), Preface (written by V. Letokhov).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Kurilenkov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurilenkov, Y.K., Smetanin, I.V., Oginov, A.V. et al. X-Ray Trapping and Bursts in a Complex Plasma of Nanosecond Vacuum Discharge. Plasma Phys. Rep. 47, 752–758 (2021). https://doi.org/10.1134/S1063780X21070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21070096

Keywords:

Navigation