Skip to main content

Non-Stationary Processes during the Formation of Dusty Plasma at the Surface of Deimos, the Satellite of Mars

Abstract—

The formation of dusty plasma due to photoelectric and electrostatic processes in the near-surface layer of the illuminated part of Deimos, the satellite of Mars, is discussed. The parameters characterizing the trajectories of motion of dust grains are determined on the basis of a physico-mathematical model for a self-consistent description of densities of photoelectrons and dust grains above the illuminated part of Deimos. It is shown that the damping of oscillations of a dust grain above the Martian satellite’s surface is associated with variations in its charge that is consistent with the concept of anomalous dissipation that follows from processes associated with variations in the charges of dust grains. It is demonstrated that for the majority of dust grains that are lifted above Deimos’s surface due to photoelectric and electrostatic processes, the damping time of their oscillations turns out to be longer than the daylight time, i.e., the non-stationarity of the dusty plasma system above the illuminated surface of Deimos manifests almost during the entire duration of the day on it. The maximum altitudes to which dust grains lift and maximum charge numbers that can be achieved by dust grains of different sizes are determined, and the typical densities of dust grains and photoelectrons above Deimos are estimated. More detailed information on the properties of its soil, which is expected to be obtained in future space missions, is required to obtain more definite data about the parameters of the plasma–dust system in the vicinity of Deimos.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    F. Montmessin, J. L. Bertaux, E. Quémerais, O. Korablev, P. Rannou, F. Forget, S. Perrier, D. Fussen, S. Lebonnois, A. Rébérac, and E. Dimarellis, Icarus 183, 403 (2006).

    ADS  Article  Google Scholar 

  2. 2

    F. Montmessin, B. Gondet, J.-P. Bibring, Y. Langevin, P. Drossart, F. Forget, and T. Fouchet, J. Geophys. Res.: Planets 112, 90 (2007).

    Google Scholar 

  3. 3

    J. A. Whiteway, L. Komguem, C. Dickinson, C. Cook, M. Illnicki, J. Seabrook, V. Popovici, T. J. Duck, R. Davy, P. A. Taylor, J. Pathak, D. Fisher, A. I. Carswell, M. Daly, V. Hipkin, et al., Science 325, 68 (2009).

    ADS  Article  Google Scholar 

  4. 4

    P. O. Hayne, D. A. Paige, J. T. Schofield, D. M. Kass, A. Kleinböhl, N. G. Heavens, and D. J. McCleese, J. Geophys. Res.: Planets 117, E08014 (2012).

  5. 5

    A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, and J. L. Bertaux, Icarus 223, 892 (2013).

    ADS  Article  Google Scholar 

  6. 6

    A. A. Fedorova, F. Montmessin, A. V. Rodin, O. I. Korablev, A. Määttänen, L. Maltagliati, and J. L. Bertaux, Icarus 231, 239 (2014).

    ADS  Article  Google Scholar 

  7. 7

    O. Korablev, A. C. Vandaele, F. Montmessin, A. A. Fedorova, A. Trokhimovskiy, F. Forget, F. Lefèvre, F. Da-erden, I. R. Thomas, L. Trompet, J. T. Erwin, S. Aoki, S. Robert, L. Neary, S. Viscardy, et al., Nature 568, 517 (2019).

    ADS  Article  Google Scholar 

  8. 8

    P. Thomas, Icarus 40, 223 (1979).

    ADS  Article  Google Scholar 

  9. 9

    P. Thomas and J. Veverka, Icarus 42, 234 (1980).

    ADS  Article  Google Scholar 

  10. 10

    A. Zakharov, M. Horanyi, P. Lee, O. Witasse, and F. Cipriani, Planet. Space Sci. 102, 171 (2014).

    ADS  Article  Google Scholar 

  11. 11

    S. I. Popel, A. P. Golub’, and L. M. Zelenyi, Plasma Phys. Rep. 44, 723 (2018).

    ADS  Article  Google Scholar 

  12. 12

    S. Soter, CRSR Report No. 462 (Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, 1971).

  13. 13

    S. I. Popel, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, and A. A. Kartasheva, Tech. Phys. Lett. 46, 812 (2020).

    ADS  Article  Google Scholar 

  14. 14

    V. N. Tsytovich and O. Havnes, Comments Plasma Phys. Contr. Fusion 15, 267 (1993).

    Google Scholar 

  15. 15

    S. I. Popel, A. P. Golub’, and T. V. Losseva, JETP Lett. 74, 362 (2001).

    ADS  Article  Google Scholar 

  16. 16

    S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    ADS  Article  Google Scholar 

  17. 17

    S. I. Popel, T. V. Losseva, A. P. Golub’, R. L. Merino, and S. N. Andreev, Contrib. Plasma Phys. 45, 461 (2005).

    ADS  Article  Google Scholar 

  18. 18

    E. Walbridge, J. Geophys. Res. 78, 3668 (1973).

    ADS  Article  Google Scholar 

  19. 19

    S. I. Popel, A. P. Golub’, Yu. N. Izvekova, V. V. Afonin, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, E. A. Lisin, and O. F. Petrov, JETP Lett. 99, 115 (2014).

    ADS  Article  Google Scholar 

  20. 20

    R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions With Surfaces in Space, Ed. by R. J. L. Grard (Reidel, Dordrecht, 1973), p. 389.

    Google Scholar 

  21. 21

    T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

  22. 22

    E. K. Kolesnikov and A. S. Manuilov, Astron. Zh. 59, 996 (1982).

    ADS  Google Scholar 

  23. 23

    R. J. L. Grard and J. K. E. Tunaley, J. Geophys. Res. 76, 2498 (1971).

    ADS  Article  Google Scholar 

  24. 24

    E. K. Kolesnikov and A. B. Yakovlev, Astron. Vestn. 31, 70 (1997).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golub’, A.P., Popel, S.I. Non-Stationary Processes during the Formation of Dusty Plasma at the Surface of Deimos, the Satellite of Mars. Plasma Phys. Rep. 47, 826–831 (2021). https://doi.org/10.1134/S1063780X21070084

Download citation

Keywords:

  • dusty plasma
  • Mars system
  • Deimos
  • damping of dust grain oscillations
  • non-stationarity
  • future space missions