Skip to main content
Log in

Dust–Acoustic Envelope Solitons in an Electron-Depleted Plasma

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A theoretical investigation of the modulational instability (MI) of dust–acoustic waves (DAWs) by deriving a nonlinear Schrödinger equation in an electron-depleted opposite polarity dusty plasma system containing non-extensive positive ions is presented. The conditions for MI of DAWs and formation of envelope solitons are investigated. The sub-extensivity and super-extensivity of positive ions are seen to change the stable and unstable parametric regimes of DAWs. The addition of dust grains causes changes the width of both bright and dark envelope solitons. The findings of this study can help understanding the nonlinear features of DAWs in Martian atmosphere, cometary tails, solar system, laboratory experiments, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. Sahu and M. Tribeche, Astrophys. Space Sci. 338, 259 (2012).

    Article  ADS  Google Scholar 

  2. M. M. Hossen, M. S. Alam, S. Sultana, and A. A. Mamun, Eur. Phys. J. D 70, 252 (2016).

    Article  ADS  Google Scholar 

  3. M. M. Hossen, M. S. Alam, S. Sultana, and A. A. Mamun, Phys. Plasmas 23, 023703 (2016).

  4. M. M. Hossen, L. Nahar, M. S. Alam, S. Sultana, and A. A. Mamun, High Energy Density Phys. 24, 9 (2017).

    Article  ADS  Google Scholar 

  5. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 33, 289 (2007).

    Article  ADS  Google Scholar 

  6. M. Shahmansouri and H. Alinejad, Phys. Plasmas 20, 033704 (2013).

  7. M. Ferdousi, S. Sultana, M. M. Hossen, M. R. Miah, and A. A. Mamun, Eur. Phys. J. D 71, 102 (2017).

    Article  ADS  Google Scholar 

  8. M. Ferdousi, M. R. Miah, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 360, 43 (2015).

    Article  ADS  Google Scholar 

  9. B. Sahu and M. Tribeche, Astrophys. Space Sci. 341, 573 (2012).

    Article  ADS  Google Scholar 

  10. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Phys. Plasmas 16, 063705 (2009).

  11. S. I. Popel and M. Y. Yu, Phys. Rev. E 50, 3060 (1994).

    Article  ADS  Google Scholar 

  12. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  13. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  14. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  15. A. Rényi, Acta Math. Acad. Sci. Hung. 6, 285 (1955).

    Article  Google Scholar 

  16. A. Saha and P. Chatterjee, Astrophys. Space Sci. 353, 169 (2014).

    Article  ADS  Google Scholar 

  17. S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy, and A. Elgarayhi, J. Plasma Phys. 80, 517 (2014).

    Article  ADS  Google Scholar 

  18. S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy, and A. Elgarayhi, Astrophys. Space Sci. 353, 493 (2014).

    Article  ADS  Google Scholar 

  19. K. Roy, P. Chatterjee, S. S. Kausik, and C. S. Wong, Astrophys. Space Sci. 350, 599 (2014).

    Article  ADS  Google Scholar 

  20. M. Bacha and M. Tribeche, Astrophys. Space Sci. 337, 253 (2012).

    Article  ADS  Google Scholar 

  21. T. E. Eastman, S. P. Christon, T. Doke, L. A. Frank, G. Gloeckler, H. Kojima, S. Kokubun, A. T. Y. Lui, H. Matsumoto, R. W. McEntire, T. Mukai, W. R. Paterson, E. C. Roelof, Y. Saito, K. Tsuruda, et al., J. Geophys. Res.: Space Phys. 103, 23503 (1998).

    Article  ADS  Google Scholar 

  22. G. P. Pavlos, A. C. Iliopoulos, V. G. Tsoutsouras, D. V. Sarafopoulos, D. S. Sfiris, L. P. Karakatsanis, and E. G. Pavlos, Phys. A: Stat. Mech. Appl. 390, 2819 (2011).

    Article  Google Scholar 

  23. J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston, and R. P. Drake, Phys. Rev. Lett. 72, 2717 (1994).

    Article  ADS  Google Scholar 

  24. S. Jahan, N. A. Chowdhury, A. Mannan, and A. A. Mamun, Commun. Theor. Phys. 71, 327 (2019).

    Article  ADS  Google Scholar 

  25. N. S. Saini and I. Kourakis, Phys. Plasmas 15, 123701 (2008).

  26. W. F. El-Taibany and I. Kourakis, Phys. Plasmas 13, 062302 (2006).

  27. H. Demiray and A. Abdikian, Chaos, Solitons Fractals 121, 50 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  28. W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Rev. E 84, 066402 (2011).

  29. S. V. Vladimirov, V. N. Tsytovich, S. I. Popel, and F. Kh. Khakimov, Modulational Interactions in Plasmas (Kluwer Academic, Dordrecht, 1995).

    Book  Google Scholar 

  30. A. K. Gailitis, Candidate’s Dissertation in Physics and Mathematics (Lebedev Physical Institute, USSR Acad. Sci., Moscow, 1964).

  31. A. K. Gailitis, Izv. Acad. Nauk Latv. SSR: Fiz. Tekh. Nauki 4, 13 (1965).

    Google Scholar 

  32. A. A. Vedenov and L. I. Rudakov, Sov. Phys.–Dokl. 9, 1073 (1965).

    ADS  Google Scholar 

  33. S. G. Tagare, Phys. Plasmas 04, 3167 (1997).

    Article  ADS  Google Scholar 

  34. Y. Ghai, N. Kaur, K. Singh, and N. S. Saini, Plasma Sci. Technol. 20, 074005 (2018).

  35. M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 342, 87 (2012).

    Article  ADS  Google Scholar 

  36. M. Shahmansouri, Iran. J. Sci. Technol. 37 (A3), 285 (2013).

    Google Scholar 

  37. S. A. El-Tantawy and W. M. Moslem, Astrophys. Space Sci. 337, 209 (2012).

    Article  ADS  Google Scholar 

  38. R. Fedele, Phys. Scr. 65, 502 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Akter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, J., Chowdhury, N.A., Mannan, A. et al. Dust–Acoustic Envelope Solitons in an Electron-Depleted Plasma. Plasma Phys. Rep. 47, 725–731 (2021). https://doi.org/10.1134/S1063780X21070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21070023

Keywords:

Navigation