Skip to main content
Log in

Effect of Electrode Polarity on the Development of the Breakdown in Conductive Water with Air Microbubbles

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

The effect of electrode polarity in the pin-to-rod geometry on the development of pulsed electric discharge in water with specific electrical conductivity of (90 ± 10) µS/cm with and without air microbubbles was experimentally studied. It was found that the initiation of the plasma channel at the anode in water occurs near the metal–liquid–insulation contact in both anode geometries under study. In the presence of microbubbles at an increased voltage, the development of plasma channels after initiation occurs in the direction opposite to the discharge gap along the insulated surface of the electrodes. In the presence of microbubbles, the breakdown voltage decreases, and the delay to discharge initiation and the total time of breakdown development by the channel propagating from the pin anode also decrease. When the voltage is increased, the development of the closing channel occurs from the cathode, regardless of its geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Koncagül, M. Tran, R. Connor, and S. Uhlenbrook, The United Nations World Water Development Report 2019: Leaving No One Behind. Facts and Figures. https://unesdoc.unesco.org/ark:/48223/pf0000367276.

  2. I. P. Shilov, L. Yu. Kochmarev, N. P. Zubkov, and D. V. Lapshin, Prikl. Fiz., No. 3, 17 (2019).

    Google Scholar 

  3. B. B. Baldanov, Ts. V. Ranzhurov, M. N. Sordonova, and L. V. Budazhapov, Prikl. Fiz., No. 1, 41 (2019).

    Google Scholar 

  4. V. A. Titov, A. V. Khlyustova, I. K. Naumova, S. A. Sirotkin, and A. V. Agafonov, Prikl. Fiz., No. 4, 35 (2019).

    Google Scholar 

  5. E. A. Kralkina, P. A. Nekliudova, A. M. Nikonov, K. V. Vavilin, and I. I. Zadiriev, Prikl. Fiz., No. 4, 41 (2019).

    Google Scholar 

  6. Yu. S. Akishev, A. V. Petryakov, N. I. Trushkin, and V. A. Ustyugov, Prikl. Fiz., No. 5, 20 (2017).

    Google Scholar 

  7. G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, E. M. Konchekov, I. N. Katorgin, I. A. Kossyi, K. A. Sarksyan, V. D. Stepakhin, S. M. Temchin, and N. K. Kharchev, Prikl. Fiz., No. 5, 10 (2017).

    Google Scholar 

  8. V. A. Panov, L. M. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and A. S. Saveliev, Prikl. Fiz., No. 5, 5 (2017).

    Google Scholar 

  9. M. Magureanu, N. Mandache, and V. Parvulescu, Water Resour. 81, 124 (2015).

    Google Scholar 

  10. Q. Chen, J. Li, and Y. Li, J. Phys. D: Appl. Phys. 48, 424005 (2015).

  11. Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, N. I. Trushkin, V. P. Kholodenko, V. A. Chugunov, N. A. Zhirkova, I. A. Irkhina, and E. N. Kobzev, Plasma Phys. Rep. 32, 1052 (2006).

    Article  ADS  Google Scholar 

  12. F. Liu, P. Sun, N. Bai, Y. Tian, H. Zhou, S. Wei, Y. Zhou, J. Zhang, W. Zhu, K. Becker, and J. Fang, Plasma Processes Polym. 7, 231 (2010).

    Article  Google Scholar 

  13. J. E. Foster, Phys. Plasmas 24, 055501 (2017).

  14. V. A. Panov, L. M. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and E. E. Son, Plasma Sources Sci. Technol. 28, 085019 (2019).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-01091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Panov.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.A., Pecherkin, V.Y., Vasilyak, L.M. et al. Effect of Electrode Polarity on the Development of the Breakdown in Conductive Water with Air Microbubbles. Plasma Phys. Rep. 47, 623–626 (2021). https://doi.org/10.1134/S1063780X21060131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21060131

Keywords:

Navigation