Skip to main content
Log in

Spectroscopic Investigation of Tangential Acceleration and Heating of Plasma of Current Sheets Formed under the Krypton Discharge

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Temperatures of singly and doubly charged krypton ions, along with electron temperature, were determined as functions of time in current sheets formed in the 2D and 3D magnetic configurations with an X-line. It is established that maximum temperature of krypton ions exceeds maximum electron temperature by more than an order of magnitude, and these temperatures exhibit different dependence on time and magnitude of the longitudinal magnetic field. Fast superthermal plasma jets directed along the largest of transverse dimensions of the current sheet, the sheet width, from the sheet center toward its periphery are discovered. It is demonstrated that Ampère’s forces are responsible for tangential acceleration of krypton plasma. Measured values of energy of accelerated krypton ions agree with estimates of the Ampère’s forces obtained on the basis of independent magnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).

    Article  ADS  Google Scholar 

  2. S. I. Syrovatskii, Astron. Zh. 43, 340 (1966).

    ADS  Google Scholar 

  3. S. I. Syrovatskii, Vestn. Akad. Nauk SSSR, No. 10, 33 (1977).

    ADS  Google Scholar 

  4. S. I. Syrovatskii, Izv. Akad. Nauk SSSR, Ser. Fiz., No. 43, 695 (1979).

  5. B. B. Kadomtsev, Sov. Phys.–Usp. 30, 193 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Priest and T. Forbes, Magnetic Reconnection (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  7. Space Physics and Plasma Physics, Tr. Fiz. Inst. im. P.N. Lebedeva, Ross. Akad. Nauk, No. 227, 130 (2000).

    Google Scholar 

  8. S. I. Syrovatskii, Sov. Astron. Lett. 2, 13 (1976).

    ADS  Google Scholar 

  9. B. V. Somov and S. I. Syrovatskii, Solar Phys. 75, 237 (1982).

    Article  ADS  Google Scholar 

  10. L. S. Ledentsov and B. V. Somov, Astron. Lett. 42, 841 (2016).

    Article  ADS  Google Scholar 

  11. A. G. Frank, Phys.–Usp. 53, 941 (2010).

    Article  Google Scholar 

  12. A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and G. V. Ostrovskaya, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma, Part 1: Optical Properties of Low-Temperature Plasma, Ed. by V. N. Ochkin (Yanus-K, Moscow, 2008), p. 315 [in Russian].

  13. N. P. Kyrie, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 36, 357 (2010).

    Article  ADS  Google Scholar 

  14. N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 95, 14 (2012).

    Article  ADS  Google Scholar 

  15. N. P. Kyrie and A. G. Frank, Plasma Phys. Rep. 38, 960 (2012).

    Article  ADS  Google Scholar 

  16. N. P. Kyrie, A. G. Frank, and D. G. Vasilkov, Plasma Phys. Rep. 45, 325 (2019).

    Article  ADS  Google Scholar 

  17. L. Beigman, V. P. Gavrilenko, N. P. Kyrie, and A. G. Frank, Zh. Prikl. Spektrosk. 54, 1021 (1991).

    Google Scholar 

  18. S. Yu. Bogdanov, V. B. Burilina, N. P. Kyrie, V. S. Markov, A. I. Morozov, and A. G. Frank, Plasma Phys. Rep. 24, 427 (2008).

    ADS  Google Scholar 

  19. G. S. Voronov, N. P. Kyrie, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 34, 999 (2008).

    Article  ADS  Google Scholar 

  20. M. Mattioli, G. Mazzitelli, K. B. Fournier, M. Finkenthal and L. Carraro, J. Phys. B: At., Mol. Opt. Phys. 39, 4457 (2006).

    Article  ADS  Google Scholar 

  21. H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, High Energy Density Phys. 1, 3 (2005).

    Article  ADS  Google Scholar 

  22. M. J. Seaton, Planet. Space Sci. 12, 55 (1964).

    Article  ADS  Google Scholar 

  23. A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2012).

  24. A de Castro, J. A. Aparicio, J. A. del Val, V. R. González, and S. Mar, J. Phys. B: At., Mol. Opt. Phys. 34, 3275 (2001).

    Article  ADS  Google Scholar 

  25. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

    Google Scholar 

  26. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1978).

    Google Scholar 

  27. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, G. V. Ostrovskaya, and A. G. Frank, Plasma Phys. Rep. 32, 1034 (2006).

    Article  ADS  Google Scholar 

  28. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  29. D. J. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 2002).

    Google Scholar 

  30. Y. N. Dnestrovskij and D. P. Kostomarov, Numerical Simulation of Plasmas (Springer Series in Computational Physics), (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  31. A. V. Artemyev, A. A. Petrukovich, A. G. Frank, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res.: Space Phys. 118, 2789 (2013).

    Article  ADS  Google Scholar 

  32. L. M. Zelenyi, A. V. Artemyev, A. A. Petrukovich, A. G. Frank, and R. Nakamura, Plasma Phys. Control. Fusion 58, 054002 (2016).

  33. A. G. Frank, A. V. Artemyev, and L. M. Zelenyi, J. Exp. Theor. Phys. 123, 697 (2016).

    Article  ADS  Google Scholar 

  34. A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 37, 829 (2011).

    Article  ADS  Google Scholar 

  35. A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).

  36. N. P. Kyrie, V. S. Markov, A. G. Frank, D. G. Vasilkov, and E. V. Voronova, Plasma Phys. Rep. 42, 549 (2016).

    Article  ADS  Google Scholar 

  37. A. G. Frank and N. P. Kyrie, Plasma Phys. Reports 43, 696 (2017).

    Article  ADS  Google Scholar 

  38. A. G. Frank, S. Yu. Bogdanov, V. S. Markov, G. V. Ostrovskaya, and G. V. Dreiden, Phys. Plasmas. 12, 052316 (2005).

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.G. Frank for useful discussions and to E.V. Voronova for her help in processing experimental data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Kyrie or S. A. Savinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyrie, N.P., Savinov, S.A. Spectroscopic Investigation of Tangential Acceleration and Heating of Plasma of Current Sheets Formed under the Krypton Discharge. Plasma Phys. Rep. 47, 611–622 (2021). https://doi.org/10.1134/S1063780X21060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21060106

Key words:

Navigation