Skip to main content
Log in

Dust–Ion–Acoustic Solitary Wave Structure in Magnetized Plasma with Nonthermally Distributed Electrons and Positrons

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dust–ion–acoustic (DIA) solitary wave (SW) propagation in a magnetized dusty plasma consisting of mobile positive and heavy negative ions, nonthermal electrons and positrons is presented. By using reductive perturbation technique, three dimensional Zakharov–Kuznetsov (Z–K) equation is derived and the solution is obtained by using the tan-hyperbolic method. Here, the dust grain charging process by plasma constituents is represented by the equation following orbital motion limited (OML) theory. The characteristics features of solitary wave amplitudes arising due to different plasma parameters such as ions mass ratio, nonthermal parameters of electrons and positrons, temperature ratio of electrons and positrons, ions density ratio, and dust density ratio are analyzed. In this analysis, the influence of nonthermal electrons on solitary wave amplitude variation is observed as more significant than that of nonthermal positrons. The findings of this work can be helpful in understanding D, E, and F regions of the Earth’s ionosphere, its mesosphere region, solar photosphere, and Titan’s ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  2. R. G. Greaves, M. D. Tinkle, and C. M. Surko, Phys. Plasmas 1, 1439 (1994).

    Article  ADS  Google Scholar 

  3. B. Boro, A. N. Dev, B. K. Saikia, and N. C. Adhikary, Plasma Phys. Rep. 46, 641 (2020).

    Article  ADS  Google Scholar 

  4. Y. J. Gu, O. Klimo, S. Weber, and G. Korn, New J. Phys. 18, 113023 (2016).

  5. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, et al., Nature 458, 607 (2009).

    Article  ADS  Google Scholar 

  6. L. A. Capone, R. C. Whitten, J. Dubach, S. S. Prasad, and W. T. Huntress, Jr., Icarus 28, 367 (1976).

    Article  ADS  Google Scholar 

  7. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldvik, J. Geophys. Res.: Space Phys. 106, 26111 (2001).

    Article  ADS  Google Scholar 

  8. A. V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer Series in Physics and Chemistry in Space, Vol. 10) (Springer, Berlin, Heidelberg, 1978), p. 3.

  9. S. H. Cho, H. J. Lee, and Y. S. Kim, Phys. Rev. E 61, 4357 (2000).

    Article  ADS  Google Scholar 

  10. P. K. Shukla and M. Marklund, Phys. Scr. T113, 36 (2004).

    ADS  Google Scholar 

  11. A. Paul, A. Das, and A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017).

    Article  ADS  Google Scholar 

  12. A. E. Dubinov, I. D. Dubinova, and V. A. Gordienko, Phys. Plasmas 13, 082111 (2006).

  13. S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  14. S. Ghosh and R. Baruthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  15. A. E. Dubinov, D. Yu. Kolotkov, and M. A. Sazonkin, Tech. Phys. 57, 585 (2012).

    Article  Google Scholar 

  16. B. Kaur and N.S. Saini, Z. Naturforsch., A: Phys. Sci. 73, 215 (2018).

    Google Scholar 

  17. R. A. Cairns, A. A. Mamum, R. Bingham, R. Bostrom, R. O. Dendy, C. M. C. Nairm, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  18. R. A. Carins, R. Bingham, R. O. Dendy, C. M. C. Nairn, P. K. Shukla, and A. A. Mamun, J. Phys. IV 05 (C6), 43 (1995). https://doi.org/10.1051/jp4:1995608

    Article  Google Scholar 

  19. H. Kaur, T. S. Gill, and N. S. Saini, Chaos, Solitons Fractals 42, 1638 (2009).

    Article  ADS  Google Scholar 

  20. D. S. Hall, C. P. Chaloner, D. A. Bryant, D. R. Lepine, and V. P. Tritakis, J. Geophys. Res.: Space Phys. 96, 7869 (1991).

    Article  ADS  Google Scholar 

  21. C. Grabbe, J. Geophys. Res.: Space Phys. 94, 17299 (1989).

    Article  ADS  Google Scholar 

  22. S. A. Elwakil, M. A. Zahran, and E. K. El-Shewy, Phys. Scr. 75, 803 (2007).

    Article  ADS  Google Scholar 

  23. A. Gusev, U. Jayanthi, I. Martin, G. Pugacheva, and W. Spjeldik, Braz. J. Phys. 30, 590 (2000).

    Article  ADS  Google Scholar 

  24. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldvik, J. Geophys. Res.: Space Phys. 106, 26111 (2001). https://doi.org/10.1029/1999JA000443

    Article  ADS  Google Scholar 

  25. J. R. Dwyer, B. W. Grefenstette, and D. M. Smith, Geophys. Res. Lett. 35, L02815 (2008). https://doi.org/10.1029/2007GL032430

  26. L. R. Merlino and J. J. Loomis, Phys. Fluids B 2, 2865 (1990).

    Article  ADS  Google Scholar 

  27. H. S. W. Massey, Negative Ions, 3rd ed. (Cambridge University Press, Cambridge, 1976), p. 663.

    Google Scholar 

  28. P. Chaizy, H. Rème, J. A. Sauvaud, C. d’Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, K. A. Anderson, C. W. Carlson, A. Korth, and D. A. Mendis, Nature 349 (6308), 393 (1991).

    Article  ADS  Google Scholar 

  29. A. J. Coates, F. J. Crary, G. R. Lewis, D. T. Young, J. H. Waite, Jr., and E. C. Sittler, Jr., Geophys. Res. Lett. 34, L22103 (2007).

  30. H. Amemiya and Y. Nakamura, J. Geomag. Geoelectr. 48, 391 (1996).

    Article  ADS  Google Scholar 

  31. F. W. Stecker, Astrophys. Space Sci. 3, 579 (1969).

    Article  ADS  Google Scholar 

  32. W. H. Zurek, Astrophys. J. 289, 603 (1985).

    Article  ADS  Google Scholar 

  33. N. Guessoum, R. Ramaty, and R. E. Lingenfelter, Astrophys. J. 378, 170 (1991).

    Article  ADS  Google Scholar 

  34. N. Iwamoto, Phys. Rev. E 47, 604 (1993).

    Article  ADS  Google Scholar 

  35. S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).

  36. S. A. El-Tantawy and W. M. Moslem, Phys. Plasmas 18, 112105 (2011).

  37. A. R. Seadawy, Comput. Math. Appl. 71, 201 (2016). https://doi.org/10.1016/j.camwa.2015.11.006

    Article  MathSciNet  Google Scholar 

  38. F. Bencheriet, D. Alifedila, and M. Djebli, Phys. Plasmas 19, 024509 (2012).

  39. A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori, and S. Irani, Phys. Plasmas 19, 082308 (2012).

  40. N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).

    Article  ADS  Google Scholar 

  41. S. I. Popel, A. P. Golub’, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).

  42. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  43. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  44. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  45. A. A. Mamun, Eur. Phys. J. D 11,143 (2000).

    Article  ADS  Google Scholar 

  46. H. S. W. Massey, in Advances in Atomic and Molecular Physics, Ed. by D. R. Bates and B. Bederson (Academic Press, New York, 1979), Vol. 15, p. 1.

    Google Scholar 

  47. M. Tribeche and G. Boumezoued, Phys. Plasmas 15, 053702 (2008).

Download references

ACKNOWLEDGMENTS

B. Boro acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial assistantship under CSIR Junior Research Fellowship (File no. 09/1221(0001)/2018-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, B., Dev, A.N., Sarma, R. et al. Dust–Ion–Acoustic Solitary Wave Structure in Magnetized Plasma with Nonthermally Distributed Electrons and Positrons. Plasma Phys. Rep. 47, 557–567 (2021). https://doi.org/10.1134/S1063780X21060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21060039

Keywords:

Navigation